Abstract:
An electrical connector includes an insulative housing with a number of through holes extending therethrough, a number of contacts assembled to the insulative housing, and a number of solder balls disposed in the though holes and each is clasped by the tail and insulative housing. Each contact includes a vertical base portion secured to a first side of the through hole, a contact engaging arm extending from a top end of the base portion, and a solder portion extending from a bottom end of the base portion. The solder portion has a wave arrangement below the base portion and projecting from the base portion to a second side of the through hole which opposites to said first side, and a tail extending downwardly from the wave arrangement and capable of moving from the first side to the second side.
Abstract:
A socket assembly comprises an insulating housing receiving a plurality of contacts, a pick up cap assembled on the insulating housing and a loading plate covering the insulating housing and the pick up cap. The pick up cap is pivotally assembled to one of the sidewalls of the insulative housing at an end thereof and has an operating portion at an opposite end thereof. The loading plate is provided with a latching piece to latch with the operating portion of the pick up cap, so that the loading plate can bring the pick up cap to open.
Abstract:
A socket connector includes a socket body, a plurality of contact terminals received in the socket body. The socket body includes an upper surface, a plurality of sidewalls extending upwardly from the upper surface. The upper surface and the sidewalls jointly define a cavity for receiving an IC package therein. A plurality of protrusions extend upwardly from the upper surface and formed separately from the sidewall. The protrusions being discretely distributed at periphery of the IC package and thereby positioning the IC package.
Abstract:
The present invention relates to a pressure measuring apparatus, characterized in that: the pressure measuring apparatus comprises a pressure sensor having a first resistor for sensing an external stress and a second resistor acting as a reference, wherein the second resistor is acting as a reference while the first resistor is used for measuring an external stress in that a first oscillating signal received by an end of the first resistor is affected by the external stress, and consequently an affected first oscillating signal varied with respect to the external stress is outputted from the other end of the first resistor, and a second oscillating signal received by an end of the first resistor is outputted from another end of the second resistor without being affected by the external stress. Hence, the present invention provides a pressure measuring apparatus and a pressure sensor thereof using the frequency difference of the oscillating signal in accordance to the variation of the resistor value as base for measuring the external stress. Hence, the present invention requires no amplifier and A/D converter so that the whole manufacturing process is simplified and also the overall cost of the pressure measuring apparatus is reduced.
Abstract:
The present invention relates to a pressure measuring apparatus, characterized in that: the pressure measuring apparatus comprises a pressure sensor having a first resistor for sensing an external stress and a second resistor acting as a reference, wherein the second resistor is acting as a reference while the first resistor is used for measuring an external stress in that a first oscillating signal received by an end of the first resistor is affected by the external stress, and consequently an affected first oscillating signal varied with respect to the external stress is outputted from the other end of the first resistor, and a second oscillating signal received by an end of the first resistor is outputted from another end of the second resistor without being affected by the external stress. Hence, the present invention provides a pressure measuring apparatus and a pressure sensor thereof using the frequency difference of the oscillating signal in accordance to the variation of the resistor value as base for measuring the external stress. Hence, the present invention requires no amplifier and A/D converter so that the whole manufacturing process is simplified and also the overall cost of the pressure measuring apparatus is reduced.
Abstract:
A socket connector includes a housing having a base and a plurality of sidewalls extending upwardly from the base. The base and the sidewalls define a receiving cavity for receiving an electronic package. A plurality of carbon nanotube contacts for signal transmission and a plurality of metallic contacts for power transmission are mounted within the housing respectively.
Abstract:
A socket connector configured with an insulative housing defining a mating interface surrounded with peripheral walls and a mounting surface is disclosed. A plurality of passageways is defined between the mating interface and the mounting surface and having an opening at the mounting surface. The insulative housing includes an encampment associated with each of the passageway at the mounting surface, and includes an extension crossing over an inner wall of the passageway to substantially narrow the opening of the opening. The socket connector furthers includes a plurality of contact terminals each received in the passageway and further includes a curvilinear solder portion extending beyond the mounting surface. And the socket connector further is incorporated with a plurality of solder balls each disposed between the encampment and the curvilinear solder portion.
Abstract:
A socket connector is configured with an insulative housing defining a mating interface surrounded with peripheral walls and a mounting surface. A plurality of passageways is defined between the mating interface and the mounting surface and having an opening at the mounting surface. The insulative housing includes an encampment associated with each of the passageway at the mounting surface, and includes an extension crossing over an inner wall of the passageway to substantially narrow the opening of the opening. The socket connector furthers includes a plurality of contact terminals each received in the passageway and further includes a curvilinear solder portion extending beyond the mounting surface. And the socket connector further is incorporated with a plurality of solder balls each disposed between the encampment and the curvilinear solder portion.
Abstract:
An electrical connector assembly (100) comprises an insulative housing (3), a plurality of contacts (2) received in the insulative housing (3) and a pick-up cap (1) assembled to the insulative housing (3), the contact (2) comprises a base portion (20), a contacting portion (21) extending upwardly from the base portion (20) and a rear portion (23) extending downwardly from the base portion (20), the pick-up cap (1) comprises a flat body portion (10), the body portion (10) comprises an upper surface (101) and a lower surface (102) opposite to each other, the lower surface (102) is supported by the insulative housing (3), a receiving space (1020) recesses from the lower surface (102), and the contacting portions (21) of said contacts (2) project beyond the lower surface (102) into the receiving space (1020).
Abstract:
An electrical connector (1) having a cover (5) mounted thereon is disclosed in accordance with the present invention. The connector includes a connector body (2) defining a passageway (20) in a mounting surface (202) with a contact (3) received therein. The contact has a tail portion (304) adapted to be electrically connected to a circuit substrate (6). The cover has a pair of legs (52) extending into the passageway and forming an opening (524) adjacent to the mounting surface of the connector body. The tail portion of the contact terminates in the opening. A fusible element (4) has a portion disposed in the opening and fused to the tail portion of the contact.