Abstract:
A system, apparatus, and method are provided for operating a peer-to-peer communication environment. The environment includes one or more clusters of peer devices, wherein devices in a single cluster are organized into a logical hierarchy under an anchor master (at the root of the hierarchy) and any number of synchronization masters; other devices are non-master devices. Synchronization parameters established by the anchor master and disseminated throughout the hierarchy enable the clusters' devices to rendezvous, discover peers and services, and communicate among themselves. The anchor master may adjust the synchronization parameters to avoid conflict with another hierarchy. Each device issues beacons (e.g., heartbeats, discovery beacons) that identify the number of devices synchronized with the reporting device, which allows the anchor master to calculate the total number of cluster members. Devices may also report details of a neighboring cluster (e.g., its synchronization parameters) via a beacon or some other communication.
Abstract:
An apparatus and methods are provided for opportunistically conducting data communications on multiple wireless channels. In these methods, a device is engaged in data communications with a second device and receives a conflicting communication demand requiring action on one or more channels other than the data-communication channel (e.g., to conduct a channel scan, to issue or receive a beacon). The device arranges a schedule of channel switches to satisfy the communication demand and advises the second device of the schedule, and may explicitly invite the second device to implement the schedule. To the extent the second device does so, the data communications continue on the other channels. The devices may be participating in a synchronized peer-to-peer communication environment that requires their attendance on the data-communication channel and that is not associated with the other channels.
Abstract:
A method for scheduling absence periods on a WLAN is provided. The method can include a WLAN station joining a WLAN served by a WLAN access point using an operating channel; formatting a message defining an absence schedule of absence periods during which the WLAN station will be off of the operating channel and unavailable to receive traffic on the operating channel; sending the message to the WLAN access point to register the absence schedule with the WLAN access point; and leaving and returning to the operating channel in accordance with the absence schedule after the absence schedule has been registered with the WLAN access point.
Abstract:
A system, apparatus and method for selecting master devices in a peer-to-peer communication environment. Devices select a master to facilitate their synchronization, and rendezvous according to a schedule of availability windows broadcast by the master as part of periodic synchronization frames. Devices capable of serving as master advertise their selection metrics, which are converted into a master preference value by a selection algorithm applied uniformly by all devices in the environment. Individual devices may identify the best local master and synchronize to it, yielding a cluster of synchronized peers. Clusters may then be synchronized to masters at further range. Individual devices conserve power by being automatically synchronized instead of having to individually discover other devices and services, and can power off their radios without sacrificing discoverability. Synchronization and peer-to-peer communication as provided herein coexists with other device demands, such as Bluetooth® operations, infrastructure-based communications and so on.
Abstract:
A method and apparatus are provided for conducting peer-to-peer communications while channel hopping among two or more wireless channels, at least one of which is a restricted channel. One type of restricted channel requires the use of DFS (Dynamic Frequency Selection) or a similar scheme for avoiding use of the channel during certain circumstances (e.g., for radar avoidance). Communicating peers may synchronize a channel-hopping sequence with TBTTs (Target Beacon Transmission Times) of the restricted channel(s), so that they switch to such a channel in time to capture a beacon and determine whether the channel is free. If the channel is free, or if no beacon is received, they may immediately begin or resume their communications. They may also quiesce just before another TBTT so as to capture that beacon. Thus, the peer-to-peer communications do not diminish a peer device's ability to receive and comply with channel switch announcements.
Abstract:
A system, apparatus and method for selecting one or more synchronization stations, or masters, in a peer-to-peer communication environment. Synchronization (or sync) stations broadcast periodic synchronization frames to advertise future availability windows, during which devices rendezvous for discovery and communication. Devices that can act as sync stations advertise preference values, which indicate their preference or suitability for the role. All devices execute the same algorithm to sort the preference values and identify a root sync station and any number of branch sync stations; leaf devices synchronize with the root or a branch sync station. This passive synchronization scheme allows individual devices to conserve power, because they need not actively discover other devices and services, and can power off their radios for periods of time without sacrificing discoverability. Synchronization and peer-to-peer communication as provided herein coexist with other device demands, such as Bluetooth® operations and infrastructure-based communications.
Abstract:
An apparatus and methods are provided for opportunistically conducting data communications on multiple wireless channels. In these methods, a device is engaged in data communications with a second device and receives a conflicting communication demand requiring action on one or more channels other than the data-communication channel (e.g., to conduct a channel scan, to issue or receive a beacon). The device arranges a schedule of channel switches to satisfy the communication demand and advises the second device of the schedule, and may explicitly invite the second device to implement the schedule. To the extent the second device does so, the data communications continue on the other channels. The devices may be participating in a synchronized peer-to-peer communication environment that requires their attendance on the data-communication channel and that is not associated with the other channels.
Abstract:
A method and apparatus are provided for conducting peer-to-peer communications while channel hopping among two or more wireless channels, at least one of which is a restricted channel. One type of restricted channel requires the use of DFS (Dynamic Frequency Selection) or a similar scheme for avoiding use of the channel during certain circumstances (e.g., for radar avoidance). Communicating peers may synchronize a channel-hopping sequence with TBTTs (Target Beacon Transmission Times) of the restricted channel(s), so that they switch to such a channel in time to capture a beacon and determine whether the channel is free. If the channel is free, or if no beacon is received, they may immediately begin or resume their communications. They may also quiesce just before another TBTT so as to capture that beacon. Thus, the peer-to-peer communications do not diminish a peer device's ability to receive and comply with channel switch announcements.
Abstract:
A method for scheduling absence periods on a WLAN is provided. The method can include a WLAN station joining a WLAN served by a WLAN access point using an operating channel; formatting a message defining an absence schedule of absence periods during which the WLAN station will be off of the operating channel and unavailable to receive traffic on the operating channel; sending the message to the WLAN access point to register the absence schedule with the WLAN access point; and leaving and returning to the operating channel in accordance with the absence schedule after the absence schedule has been registered with the WLAN access point.
Abstract:
A system and method for peer-to-peer communications is disclosed. A first wireless device receives a message from a second wireless device identifying communication requirements of a point-to-point communication involving the second wireless device. The first wireless device determines whether the second wireless device's communication requirements can be satisfied based on communication resources already committed for other communications. When the communication requirements of the second wireless device can be satisfied, the first wireless device generates a time sharing schedule to be used by the first and second wireless devices based on the already-committed communication requirements and the second device's communication requirements. The time sharing schedule may include a first portion for broadcast communication among a group of devices to which the first and second wireless devices belong, and a second portion for the point-to-point communications of the second wireless devices.