Abstract:
A radio frequency device has a multifunctional tuner that stores measurements of reflection coefficient parameter in a register. The radio frequency device also has a transceiver that has a transmitter. The transceiver may detect a transmitter signal from the transmitter to an antenna in an initial tuning state and then determine whether the transmitter signal is stable. In response to the transmitter signal being stable, the transceiver may measuring the reflection coefficient parameters at the multifunctional tuner. Furthermore, the radio frequency device has a baseband controller that has a memory to store instructions and a processor to execute the instructions. The instructions cause the processor to determine an antenna impedance based on the reflection coefficient parameters, and in response to determining that the antenna impedance is greater than or less than a threshold antenna impedance, iteratively tune the antenna using the multifunctional tuner.
Abstract:
An electronic device may be provided with wireless circuitry and a housing with upper and lower ends. The lower end may include first and second open slot antennas that are directly fed by respective feeds and that radiate in a cellular ultra-high band. The lower end may also include first and second inverted-F antennas. The upper end may include third and fourth inverted-F antennas. The first inverted-F antenna may have a first feed that conveys currents below 2700 MHz and a second feed that conveys antenna currents in the cellular ultra-high band, a wireless local area network band, and/or ultra-wideband frequency bands. If desired, the upper end may include a third open slot antenna that is directly fed by a corresponding antenna feed and that radiates in the cellular ultra-high band and/or in the ultra-wideband frequency bands.
Abstract:
An electronic device may be provided with wireless circuitry and control circuitry. The wireless circuitry may include an antenna with an inverted-F antenna resonating element formed from portions of a peripheral conductive electronic device housing structure and may have an antenna ground that is separated from the antenna resonating element by a gap. The antenna may include a first adjustable component coupled between the antenna resonating element arm and the antenna ground on a first side of the antenna feed and a second adjustable component coupled between the antenna resonating element arm and the antenna ground on a second side of the antenna feed. Control circuitry in the electronic device may adjust the first and second adjustable components between a first tuning mode, a second tuning mode, and a third tuning mode.
Abstract:
An electronic device may have a display. A display cover layer and a transparent inner display member may overlap a display pixel layer. The display pixel layer may have an array of display pixels for displaying images for a user. A touch sensor layer may be interposed between the display pixel layer and the transparent display member. A ferromagnetic shielding layer may be mounted below the display pixel layer. A flexible printed circuit containing coils of metal signal lines that form a near-field communications loop antenna may be interposed between the ferromagnetic shielding layer and the display pixel layer. A non-near-field antenna such as an inverted-F antenna may have a resonating element mounted on an inner surface of the display cover layer. The resonating element may be interposed between the transparent display member and the display cover layer.
Abstract:
An electronic device may have a display. A display cover layer and a transparent inner display member may overlap a display pixel layer. The display pixel layer may have an array of display pixels for displaying images for a user. A touch sensor layer may be interposed between the display pixel layer and the transparent display member. A ferromagnetic shielding layer may be mounted below the display pixel layer. A flexible printed circuit containing coils of metal signal lines that form a near-field communications loop antenna may be interposed between the ferromagnetic shielding layer and the display pixel layer. A non-near-field antenna such as an inverted-F antenna may have a resonating element mounted on an inner surface of the display cover layer. The resonating element may be interposed between the transparent display member and the display cover layer.
Abstract:
An electronic device may have a display. A display cover layer and a transparent inner display member may overlap a display pixel layer. The display pixel layer may have an array of display pixels for displaying images for a user. A touch sensor layer may be interposed between the display pixel layer and the transparent display member. A ferromagnetic shielding layer may be mounted below the display pixel layer. A flexible printed circuit containing coils of metal signal lines that form a near-field communications loop antenna may be interposed between the ferromagnetic shielding layer and the display pixel layer. A non-near-field antenna such as an inverted-F antenna may have a resonating element mounted on an inner surface of the display cover layer. The resonating element may be interposed between the transparent display member and the display cover layer.
Abstract:
An electronic device may be provided with an antenna having a resonating element formed from a segment of peripheral conductive housing structures. A speaker may be aligned with first openings in the segment. A vent may be aligned with second openings in the segment. A connector may protrude through the segment. A trace combiner for the antenna may be patterned onto the speaker and may be coupled to the segment. Tuners for the antenna may be disposed on first and second flexible printed circuits that extend along opposing sides of the connector. The tuners may be controlled through the speaker. The second flexible printed circuit may extend along the vent. The vent may have a vent cowling with a cut-out region next to the tuner on the second flexible printed circuit.
Abstract:
An electronic device may be provided with peripheral conductive housing structures having first and second segments. A flexible printed circuit may have a first tail that extends along the first and second segments and a second tail that extends along the first segment. A conductive trace on the first tail may be coupled to an antenna feed terminal on the second segment. A conductive trace on the second tail may couple the conductive trace on the first tail to the first segment. A tuner and filters may be disposed on the flexible printed circuit and may be coupled to the conductive traces. The conductive trace on the second tail may have a tapered width. An antenna in the device may have a resonating element that includes both the first and second segments, thereby allowing the antenna to exhibit a wide bandwidth from 1.1-5 GHz.
Abstract:
An electronic device may have a display. A display cover layer and a transparent inner display member may overlap a display pixel layer. The display pixel layer may have an array of display pixels for displaying images for a user. A touch sensor layer may be interposed between the display pixel layer and the transparent display member. A ferromagnetic shielding layer may be mounted below the display pixel layer. A flexible printed circuit containing coils of metal signal lines that form a near-field communications loop antenna may be interposed between the ferromagnetic shielding layer and the display pixel layer. A non-near-field antenna such as an inverted-F antenna may have a resonating element mounted on an inner surface of the display cover layer. The resonating element may be interposed between the transparent display member and the display cover layer.
Abstract:
Antenna structures at a given end of an electronic device may include antenna structures that are shared between multiple antennas. The device may include an antenna with an inverted-F antenna resonating element formed from portions of a peripheral conductive electronic device housing structure and may have an antenna ground that is separated from the antenna resonating element by a gap. A short circuit path may bridge the gap. The short circuit path may be a split return path coupled between a first point on the inverted-F antenna resonating element arm and second and third points on the antenna ground. The electronic device may include an additional antenna that includes the antenna ground and metal traces that form an antenna resonating element arm. The antenna resonating element arm of the additional antenna may be parasitically coupled to the inverted-F antenna resonating element and a portion of the split return path.