Abstract:
A method performed at a base station and a corresponding method performed at a station receiving a transmission from the base station. The methods relate to signaling the station as to a number of PDCCH information that is included in the transmission so the station may terminate a search when the station has identified the PDCCHs in the transmission. The method performed by the station includes receiving the transmission that includes at least one PDCCH information, each PDCCH information having a respective mapped downlink control information (DCI). The method further includes detecting one of the PDCCH information in the transmission and determining lengths of information bits of the DCI and the PDCCH information. The method also includes terminating a search for a further one of the PDCCH information when a first type of padding is used for the mapping of the DCI over the PDCCH information based on the lengths.
Abstract:
Managing radio resources across dual networks includes a wireless mobile device connecting to a first wireless network using a first radio access technology. The wireless device may notify the first network of a capability to be temporarily non-responsive to the first network while maintaining a signaling connection to the first network. The wireless device may communicate with a second network. The wireless device may return to communicating with the first network subsequent to communicating with the second network, and in response to communicating with the second network for less than a predetermined amount of time, the wireless device may send a scheduling request to the first network. In response to receiving a grant acknowledgement from the first network, the wireless device may send a buffer status report that includes a value such as zero to indicate that the wireless device has returned to and can communicate with the first network.
Abstract:
Managing radio resources across dual networks includes a wireless mobile device connecting to a first wireless network using a first radio access technology. The wireless device may notify the first network of a capability to be temporarily non-responsive to the first network while maintaining a signaling connection to the first network. The wireless device may communicate with a second network. The wireless device may return to communicating with the first network subsequent to communicating with the second network, and in response to communicating with the second network for less than a predetermined amount of time, the wireless device may send a scheduling request to the first network. In response to receiving a grant acknowledgement from the first network, the wireless device may send a buffer status report that includes a value such as zero to indicate that the wireless device has returned to and can communicate with the first network.
Abstract:
A user device receives packets from a base station. The user device may invoke decoding while the packet is still being received, based on the incomplete contents of a given packet. This “partial packet decoding” relies on the fact that the underlying information in the packet is encoded with redundancy (code rate less than one). If link quality is poor, the partial packet decoding is likely to be unsuccessful, i.e., to fail in its attempt to recover the underlying information. To avoid waste of power, the user device may be configured to apply one or more tests of link quality prior to invoking the partial packet decoding on a current packet.
Abstract:
Mobile devices, base stations, and/or relay stations may implement a method for an improved and reliable automatic repeat request feedback indication. A mobile device (UE) may establish communication within a wireless network, and indicate to the network that the UE is a special type device, e.g. a constrained device. The network (base station) may then not send an indication on a physical indicator channel to the UE when certain conditions are met, and instead, the mobile device may interpret control information received from the network on a physical control channel as a negative acknowledgment indication corresponding to an automatic repeat request from the network. The UE may then perform a retransmission according to the interpreted control information. A new control information format may be used to further define how the network and UE implement the automatic repeat request process, to reduce the total number of bits required in the control information.
Abstract:
Manipulating modulation and coding scheme (MCS) allocation after a communication interruption. A UE device may resume communications with a BS after a communication interruption. First channel quality information may be generated and transmitted to the BS. A first MCS allocation, which may be based at least in part on the first channel quality information, may be received from the BS. Second channel quality information may be generated and transmitted to the BS, where the second channel quality information is modified by an offset configured to modify a second MCS allocation.
Abstract:
In order to reduce power consumption of an electronic device during wireless communication, the electronic device may transition between a baseline (simple) receiver and a higher-power advanced receiver based on network conditions and/or environmental conditions. For example, the transition to the advanced receiver may occur when it offers improved communication performance over the baseline receiver, such as when there is significant interference and a high data rate, or when there is significant interference and a signal-to-noise ratio (SNR) is low. Similarly, the transition to the baseline receiver may occur when the capabilities of the advanced receiver are not needed, such as when there is less interference, or when the data rate is lower and the SNR is high. In this way, the electronic device can avoid the added power consumption associated with the advanced receiver except where the communication performance offered by the advanced receiver is needed.
Abstract:
Methods and apparatus for adaptively adjusting receiver operation for e.g., power optimization. In one embodiment, operation during diversity operation is adaptively adjusted. Diversity techniques consume significantly more power than non-diversity operation. However, the performance gain from receiver diversity is not always predictable. Consequently, in one embodiment, a device evaluates the overall performance gain contributed by diversity operation and, where the performance gain is insignificant or inadequate, the device disables diversity operation. In one implementation, the device can operate in a static single antenna mode, a dynamic single antenna mode and a dynamic multiple antenna mode.
Abstract:
Enhanced random access procedures for link-budget-limited user equipment (UE) devices are disclosed. A user equipment device may transmit a first message containing a Physical Random Access Channel (PRACH). The PRACH contains instances of a Zadoff-Chu sequence, and may be transmitted repeatedly as part of a single random attempt, to facilitate correlation data combining at the base station. The available Zadoff-Chu sequences may be partitioned among a plurality of sets, each set being associated with a respective Doppler shift range (or frequency hop pattern or time repetition pattern). A UE device may signal Doppler shift (or other information) to the base station by selection of one of the sets. The first PRACH transmission and the following PRACH transmission may occur in consecutive subframes. A UE device may select from a special set of Zadoff-Chu sequences (different from a conventional set of sequences), to signal its status as a link-budget-limited device.
Abstract:
Mobile devices, base stations, and/or relay stations may implement a method for an improved and reliable automatic repeat request feedback indication. A mobile device (UE) may establish communication within a wireless network, and indicate to the network that the UE is a special type device, e.g. a constrained device. The network (base station) may then not send an indication on a physical indicator channel to the UE when certain conditions are met, and instead, the mobile device may interpret control information received from the network on a physical control channel as a negative acknowledgment indication corresponding to an automatic repeat request from the network. The UE may then perform a retransmission according to the interpreted control information. A new control information format may be used to further define how the network and UE implement the automatic repeat request process, to reduce the total number of bits required in the control information.