Abstract:
A station that performs a method to coordinate transmissions of scheduling requests (SR) with OnDurations of a connected discontinuous reception (C-DRX) cycle. The station receives a packet at a packet arrival time relative to a schedule indicating the SR opportunities and onDurations, the SR opportunities occurring at a first interval, the onDurations occurring at a second interval, the first interval being less than the second interval. The station determines an SR opportunity subsequent to the packet arrival time that precedes an entirety of a subsequent onDuration, such that a transmission duration to transmit the SR and the packet maximally overlaps with the selected onDuration. A sleep mode of the processor of the station is used until a time associated with the selected SR opportunity. An active mode of the processor is used to transmit the SR and receive control channel information during the onDuration.
Abstract:
A user equipment device (UE) may transmit, in a packet to a base station, information associated with resource configuration/resource requirement corresponding to wireless uplink communications of the wireless communication device. The base station may assign resources to the UE based on the received information. The UE may receive an uplink grant from the base station, with the uplink grant specifying resources for use by the wireless communication device during the uplink communications based on the information previously transmitted to the base station by the wireless communication device. The UE may send the packet at the time a voice call with the UE is initiated, and/or the UE may transmit the information during voice calls in response the UE changing one or more resource configuration parameters during the voice call. The UE may use Robust Header Compression packets of various types to transmit the resource configuration information.
Abstract:
A device and method performs a handover. The method includes establishing a connection to a cellular network. The method includes determining whether a WiFi network is available for connection. The method includes determining performance data of the WiFi network based upon network metrics. The method includes determining a quality of service (QoS) parameter associated with a currently executed application, the QoS parameter being indicative of whether a handover from the cellular network to the WiFi network is permitted. The method includes performing the handover from the cellular network to the WiFi network when the performance data of the WiFi network satisfies a set of predetermined criteria for the network metrics and the QoS parameter indicates the handover is permitted.
Abstract:
Described herein are systems and methods for prioritizing frequency selection of a user equipment (“UE”) having a transceiver configured to enable the UE to establish a connection with a network using at least two communication protocols. A method may comprise recording, at the UE, a camped frequency and a camped band with which the UE is communicating with the first network in the first protocol, disconnecting from the first network and connecting to the second network, and disconnecting from the second network and reconnecting to the first network, wherein the reconnecting to the first network includes determining whether one of the camped frequency or a different frequency within the camped band is available for reconnection to the first network, and reconnecting to the first network using the one of the camped frequency or the different frequency within the camped band.
Abstract:
This disclosure relates to network infrastructure identification by a wireless user equipment (UE) device. According to one embodiment, one or more requests for infrastructure identification information may be transmitted. Each request may indicate a current location of the UE. A respective response may be received to each corresponding respective request. Each respective response may include infrastructure identification information for the current location indicated in the corresponding respective request. Features such as vendor, type, model, or version of cellular network infrastructure equipment with which the UE performs cellular communication may be identified based on the response(s), and features specific to the identified equipment may accordingly be implemented during such cellular communication.
Abstract:
This disclosure relates to techniques for scheduling radio resource control connections between a wireless device and a network element of a network in advance. According to some embodiments, a wireless device may provide an indication of one or more types of upcoming data traffic to the network element. The network element may schedule one or more radio resource control connections for the wireless device based at least in part on the indication of one or more types of upcoming data traffic. The network element may provide an indication of the scheduled radio resource control connection(s) to the wireless device. The wireless device and the network may establish the scheduled radio resource control connection at the scheduled time.
Abstract:
A method for reducing packet loss during data transfer from a network to a wireless communication device over a connection is disclosed. The method can include the wireless communication device signaling a first receive window size for a data transfer; determining occurrence of an event resulting in an interruption of the connection; and, in response to determining occurrence of the event, signaling a second receive window size for the data transfer prior to the event to trigger an adjustment of a data rate of the data transfer in preparation for the event.
Abstract:
A network reselection procedure, of a wireless communication device, that occurs following a network detachment event, such as a device sleep event or a device power savings mode event. The wireless communication device attempts to acquire a first wireless network to which the wireless communication device was most recently attached, immediately preceding the network detachment event. Then, in response to an unsuccessful acquisition of the first wireless network, the wireless communication device attempts an alternate network acquisition utilizing a Most Recently Used List (MRUL) that is stored at the wireless communication device and includes information about one or more frequency bands allocated to a primary service provider with which the wireless communication device is affiliated. After determining whether the alternate network acquisition attempt was successful, the wireless communication device attaches to a second network and stores information associated with the second network.
Abstract:
Estimating loading and potential available throughput a serving cell of a wireless user equipment (UE) device. Physical layer metrics of a channel on which the UE communicates with the serving cell may be measured. Cell utilization of the serving cell may be calculated based at least in part on the measured physical layer metrics. A maximum available throughput of the serving cell may be calculated based on the cell utilization.
Abstract:
Systems and methods that enhance radio link performance in a multi-carrier environment. A method may be performed by a UE that includes scanning a plurality of carrier components for a primary cell, determining a first bandwidth of the primary cell, scanning for a secondary cell, determining a second bandwidth of the secondary cell, determining a maximum aggregated bandwidth by combining the first bandwidth and the second bandwidth and when the maximum aggregated bandwidth exceeds a bandwidth capability of the UE, performing a cell selection procedure to select one of the primary cell or the secondary cell based on a higher of the first bandwidth and the second bandwidth.