Abstract:
Corrosive effects arising during well treatment applications are inhibited and/or prevented by introducing into the well composition containing a corrosion inhibitor of a sophorolipid or a mannosylerythritol lipid or a combination thereof. The composition may also contain a corrosion inhibitor intensifier.
Abstract:
Produced or flowback water from an underground reservoir having been treated with a fluid containing a viscosifying polymer and a vitamin B1 and/or ylide breaker may be recycled by deactivating the vitamin B1 and/or ylide breaker with a sulfur or phosphorus containing nucleophilic agent.
Abstract:
A hydrocarbon-bearing subterranean formation may be treated with an aqueous well treatment fluid which contains a hexose oxidase, such as glucose oxidase, mannose oxidase or galactose oxidase. The aqueous well treatment fluid further may contain a viscosifying polymer and an aldohexose. The aldohexose reacts in-situ with the hexose oxidase and molecular oxygen to produce hydrogen peroxide. The hydrogen peroxide may then act as a breaker.
Abstract:
Microbial growth of at least one microorganism may be decreased, prevented, and/or inhibited in a fluid by providing ultrasonic waves to the fluid. In an optional non-limiting embodiment, an amount of at least one gas may be provided to the fluid for further decreasing the microbial population, preventing microbial growth, and/or inhibiting microbial growth. In another non-limiting embodiment, the fluid may be a downhole fluid, such as but not limited to, drilling fluids, completion fluids, production fluids, injection fluids, stimulation fluids, refinery fluids, servicing fluids, and combinations thereof. Alternatively, the fluid or downhole fluid may have a temperature ranging from about 25 C to about 100 C.
Abstract:
Corrosive effects arising during well treatment applications are inhibited and/or prevented by introducing into the well composition containing a corrosion inhibitor of a biosurfactant selected from glycolipids (other than sophorolipids and mannosylerythritol lipids), phospholipids; polyol lipids; lipoproteins, lipopeptides, ornithine lipids, carbohydrate-lipids, neutral lipids, aminoacid lipids, exolipids, liposan; siderolipids, protein polyamines diglycosyl diglycerides, fimbriae, saponified triglycerides and fatty acids. The composition may also contain a corrosion inhibitor intensifier.
Abstract:
Methods and fluid compositions are provided for decreasing an amount of sulfur-containing compounds in downhole fluids and/or subterranean reservoir wellbores by including at least one enzyme destabilizer in a fluid composition. The fluid composition may then be circulated into a subterranean reservoir wellbore. The fluid composition may further include a base fluid and at least one sulfur producing enzyme. The base fluid may be or include, but is not limited to, drilling fluids, servicing fluids, production fluids, completion fluids, injection fluids, refinery fluids, and combinations thereof. The enzyme destabilizer(s) may be destabilize the sulfur producing enzymes and thereby decrease an amount of sulfur-containing compounds produced vis-à-vis the sulfur producing enzyme(s).
Abstract:
Microbial growth of at least one microorganism may be decreased, prevented, and/or inhibited in a fluid by providing ultrasonic waves to the fluid. In an optional non-limiting embodiment, an amount of at least one gas may be provided to the fluid for further decreasing the microbial population, preventing microbial growth, and/or inhibiting microbial growth. In another non-limiting embodiment, the fluid may be a downhole fluid, such as but not limited to, drilling fluids, completion fluids, production fluids, injection fluids, stimulation fluids, refinery fluids, servicing fluids, and combinations thereof. Alternatively, the fluid or downhole fluid may have a temperature ranging from about 25 C to about 100 C.
Abstract:
A hydrocarbon-bearing subterranean formation may be treated with an aqueous well treatment fluid which contains a hexose oxidase, such as glucose oxidase, mannose oxidase or galactose oxidase. The aqueous well treatment fluid further may contain a viscosifying polymer and an aldohexose. The aldohexose reacts in-situ with the hexose oxidase and molecular oxygen to produce hydrogen peroxide. The hydrogen peroxide may then act as a breaker.
Abstract:
Recovery of fluids from a subterranean formation during a well treatment operation is enhanced by injecting into the formation a treatment fluid comprising a sophorolipid.
Abstract:
Antifreeze proteins having an ice-binding site, such as those derived from the Marinomonas primoryensis bacterium, may be used in additive compositions, fluid compositions, and methods for depressing the freezing point of the fluid compositions. The fluid composition may include the antifreeze protein and a base fluid, such as drilling fluids, servicing fluids, production fluids, completion fluids, injection fluids, refinery fluids, and combinations thereof.