Abstract:
A Mg compound based catalyst precursor made from or containing up to 50% by mols, with respect to Mg, of a compound of formula K(OR1) wherein R1 is H or a C1-C10 hydrocarbon group. When treated with transition metal compounds, the precursor is converted into catalyst with high activity in olefin polymerization.
Abstract:
A solid catalyst component (i) made from or containing a titanium compound, a magnesium compound and an ether, is activated by using two different aluminum alkyl compounds (ii) and (iii) in sequence and under specific molar ratios relative to each other and to the ether of the solid catalyst component (i).
Abstract:
A polypropylene composition made from or containing: A) from 50 wt % to 90 wt %; of a propylene homopolymer; B) from 10 wt % to 50 wt %; of a copolymer of propylene having from 30.0 wt % to 70.0 wt %, of ethylene derived units, based upon the total weight of the copolymer; the sum of the amount of component A) and B) being 100; the polypropylene composition having: i) an intrinsic viscosity of the fraction soluble in xylene at 25° C. between 2.2 to 4.0 dl/g; ii) a MFR L (Melt Flow Rate according to ISO 1133, condition L, at 230° C. and 2.16 kg load) from 0.5 to 100 g/10 min; iii) a xylene soluble fraction ranging from 20 wt % to 50 wt %, based upon the total weight of the polypropylene composition; wherein the polypropylene composition being obtained by a polymerization process wherein the catalyst system contains bismuth.
Abstract:
A polyolefin composition made from or containing:A) from about 19 wt % to about 50 wt % of a propylene ethylene copolymer having an ethylene derived units content ranging from about 1.5 wt % to about 6.0 wt %B) from about 50 wt % to about 81 wt % of a propylene ethylene 1-butene terpolymer having an ethylene derived units content ranging from about 1.5 wt % to about 6.0 wt % and 1-butene derived units content between about 4.8 wt % and about 12.4 wt %;the sum of the amount of component A) and B) being 100;the polyolefin composition being characterized by the following features: molecular weight distribution (MWD), expressed in terms of Mw/Mn, greater than about 4.0; the creep and recovery curve measured on the polymer fuse at 200° C. shows a maximum value between 600 and 1200 seconds, lower than about 53×10−4 l/Pa.
Abstract:
A Prepolymerized catalyst component for the polymerization of olefins comprising a solid catalyst component which comprises Mg, Ti, and chlorine atoms and an electron donor (ID) said prepolymerized catalyst component being characterized by the fact that: the electron donor (ID) is constituted by at least 80% mol of 1,3 diethers with respect to the total molar amount of electron donor compounds; the prepolymerized catalyst has a porosity due to pores with diameters up to 1 μm of less than 0.2 cm3/g; it contains an amount of ethylene prepolymer of less than 45% with respect to the total weight of prepolymerized catalyst.
Abstract:
The present disclosure provides a catalyst system made from or containing: (A) a solid catalyst component made from or containing (i) a titanium compound supported on a magnesium dichloride; (B) an aluminum alkyl compound; and (C) a halogenated organic ester of formula A-COOR, wherein R is a C1-C10 hydrocarbon group and A is a C1-C15 saturated or unsaturated hydrocarbon group in which at least one of the hydrogen atoms is replaced by a chlorine atom. The present disclosure also provides a process for preparing an olefinic polymer, including a polymerization step of polymerizing an olefin in the presence of the catalyst system. The present disclosure also provides an olefinic polymer made therefrom.
Abstract:
The present disclosure relates to propylene-ethylene copolymers comprising an ethylene content of 0.1-10% by weight, a molecular weight distribution (MWD), expressed in terms of Mw/Mn, of greater than 3.0 and a xylene soluble (XS) fraction content defined by values that fall below the line given by the equation XS=1.0296·e0.435C2. The propylene-ethylene copolymers advantageously exhibit high transparency and low melting temperatures.
Abstract:
A process for preparing a catalyst component made from or containing Mg, Ti, and at least an electron donor compound (ID), including the steps of: (a) reacting a Mg based compound with a Ti compound, having at least a Ti—Cl bond, in an amount such that the Ti/Mg molar ratio is greater than 3 and at a temperature ranging from 0 to 150° C., thereby yielding an intermediate solid catalyst component containing Mg and Ti; and (b) contacting the intermediate solid catalyst component with a gaseous stream containing the electron donor compound (ID) in a gaseous dispersing medium, thereby yielding a final solid catalyst component having an ID/Ti molar ratio ranging from 0.5:1 to 20:1.
Abstract:
A polypropylene composition made from or containing: A) from 60 to 90 wt %, based upon the total weight of the polypropylene composition, of a fraction insoluble in xylene at 25° C., is made from or containing more than 80% wt of propylene units, and B) from 10 to 40 wt %, based upon the total weight of the polypropylene composition, of a fraction soluble in xylene at 25° C. is made from or containing a copolymer of propylene and ethylene having an average content of ethylene derived units from 30.0 wt % to 55.0 wt %, wherein the fraction when subjected to GPC fractionation and continuous IR analysis for determining the ethylene content of the eluted fractions (GPC-IR analysis), shows that the content of ethylene increases along with the Mw for fractions having Mw higher than the average.
Abstract:
A solid catalyst component for the polymerization of olefins made from or containing a magnesium halide, a titanium compound having at least a Ti-halogen bond, a first electron donor compound selected from 1,3 diethers (DE), and a second electron donor compound selected from dicarbamates (DC), wherein the first and second electron donor compounds are present in a molar ratio DE:DC ranging from 4.5:1 to 20:1.