Abstract:
Portable wireless mobile device motion capture and analysis system and method configured to display motion capture/analysis data on a mobile device. System obtains data from motion capture elements and analyzes the data. Enables unique displays associated with the user, such as 3D overlays onto images of the user to visually depict the captured motion data. Ratings associated with the captured motion can also be displayed. Predicted ball flight path data can be calculated and displayed. Data shown on a time line can also be displayed to show the relative peaks of velocity for various parts of the user's body. Based on the display of data, the user can determine the equipment that fits the best and immediately purchase the equipment, via the mobile device. Custom equipment may be ordered through an interface on the mobile device from a vendor that can assemble-to-order customer built equipment and ship the equipment.
Abstract:
A broadcasting method for broadcasting images with augmented motion data, which may utilize a system having at least one camera, a computer and a wireless communication interface. The system obtains data from motion capture elements, analyzes data and optionally stores data in database for use in broadcasting applications, virtual reality applications and/or data mining. The system also recognizes at least one motion capture data element associated with a user or piece of equipment, and receives data associated with the motion capture element via the wireless communication interface. The system also enables unique displays associated with the user, such as 3D overlays onto images of the user to visually depict the captured motion data. Ratings, compliance, ball flight path data can be calculated and displayed, for example on a map or timeline or both. Furthermore, the system enables performance related equipment fitting and purchase.
Abstract:
Virtual reality system for viewing current and previously stored or calculated motion data. System obtains data from motion capture elements, analyzes data and stores data in database for use in virtual reality applications and/or data mining, which may be charged for. Enables unique displays associated with the user, such as 3D overlays onto images of the user to visually depict the captured motion data. Ratings, compliance, ball flight path data can be calculated and displayed, for example on a map or timeline or both. Enables performance related equipment fitting and purchase. Includes active and passive identifier capabilities.
Abstract:
A wireless motion capture test head system including at least one motion capture element, an isolator, mount and an external computer. The motion capture element(s) may include a memory, a wireless motion capture sensor, a radio and a microcontroller. The microcontroller may collect sensor values data from the wireless motion capture sensor, store the data in the memory, analyze the data, recognize an event within the data to determine event data, and transmit the event data associated with the event via the radio. The isolator may surround the at least one motion capture element to simulate physical acceleration dampening of cerebrospinal fluid around a human brain, in order to minimize translation of linear acceleration and rotational acceleration of the event data to obtain an observed linear acceleration and an observed rotational acceleration of the at least one motion capture element coupled in an inner portion of a headform.
Abstract:
Enables a fitting system for sporting equipment using an application that executes on a mobile phone for example to prompt and accept motion inputs from a given motion capture sensor to measure a user's size, range of motion, speed and then utilizes that same sensor to capture motion data from a piece of equipment, for example to further optimize the fit of, or suggest purchase of a particular piece of sporting equipment. Utilizes correlation or other data mining of motion data for size, range of motion, speed of other users to maximize the fit of a piece of equipment for the user based on other user's performance with particular equipment. For example, this enables a user of a similar size, range of motion and speed to data mine for the best performance equipment, e.g., longest drive, lowest putt scores, highest winning percentage, etc., associated with other users having similar characteristics.
Abstract:
A sensor event detection and tagging system that analyzes data from multiple sensors to detect an event and to automatically select or generate tags for the event. Sensors may include for example a motion capture sensor and one or more additional sensors that measure values such as temperature, humidity, wind or elevation. Tags and event detection may be performed by a microprocessor associated with or integrated with the sensors, or by a computer that receives data from the microprocessor. Tags may represent for example activity types, players, performance levels, or scoring results. The system may analyze social media postings to confirm or augment event tags. Users may filter and analyze saved events based on the assigned tags. The system may create highlight and fail reels filtered by metrics and by tags.
Abstract:
Enables a fitting system for sporting equipment using an application that executes on a mobile phone for example to prompt and accept motion inputs from a given motion capture sensor to measure a user's size, range of motion, speed and then utilizes that same sensor to capture motion data from a piece of equipment, for example to further optimize the fit of, or suggest purchase of a particular piece of sporting equipment. Utilizes correlation or other data mining of motion data for size, range of motion, speed of other users to maximize the fit of a piece of equipment for the user based on other user's performance with particular equipment. For example, this enables a user of a similar size, range of motion and speed to data mine for the best performance equipment, e.g., longest drive, lowest putt scores, highest winning percentage, etc., associated with other users having similar characteristics.
Abstract:
A system that mirrors motion of a physical object by displaying a virtual object moving in a virtual environment. The mirroring display may be used for example for feedback, coaching, or for playing virtual games. Motion of the physical object is measured by motion sensors that may for example include an accelerometer, a gyroscope, and a magnetometer. Sensor data is transmitted to a computer that calculates the position and orientation of the physical object and generates a corresponding position and orientation of the virtual object. The computer may correct or adjust the calculations using sensor data redundancies. The virtual environment may include constraints on the position, orientation, or motion of the virtual object. These constraints may be used to compensate for accumulating errors in position and orientation. The system may for example use proportional error feedback to adjust position and orientation based on sensor redundancies and virtual environment constraints.
Abstract:
A system that analyzes data from multiple sensors, potentially of different types, that track motions of players, equipment, and projectiles such as balls. Data from different sensors is combined to generate integrated metrics for events and activities. Illustrative sensors may include inertial sensors, cameras, radars, and light gates. As an illustrative example, a video camera may track motion of a pitched baseball, and an inertial sensor may track motion of a bat; the system may use the combined data to analyze the effectiveness of the swing in hitting the pitch. The system may also use sensor data to automatically select or generate tags for an event; tags may represent for example activity types, players, performance levels, or scoring results. The system may analyze social media postings to confirm or augment event tags. Users may filter and analyze saved events based on the assigned tags.
Abstract:
A system that measures a swing of a bat with one or more sensors and analyzes sensor data to create swing quality metrics. Metrics may include for example rotational acceleration, on-plane efficiency, and body-bat connection. Rotational acceleration measures the centripetal acceleration of the bat along the bat's longitudinal axis at a point early in the rotational part of the swing; it is an indicator of the swing's power. On-plane efficiency measures how much of the bat's angular velocity occurs around the swing plane, the plane spanned by the bat and the bat's sweet spot velocity at impact. Body-bat connection measures the angle between the bat and the body tilt axis, which is estimated from the trajectory of the hand position on the bat through the swing; an ideal bat-body connection is near 90 degrees. These three swing quality metrics provide a simple and useful characterization of the swing mechanics.