Abstract:
A liquid crystal display (LCD) and a display device are disclosed. The LCD is provided with a plurality of pixel units; each pixel unit includes a plurality of sub-pixel units for displaying different colors; quantum dot (QD) layers capable of allowing backlight to run through are disposed at positions of an array substrate, corresponding to the sub-pixel units of at least one color of the pixel units; the QD layers are excited by ultraviolet light in sunlight and emit light which at least is of the color of the sub-pixel units; and color filters are disposed between the QD layers and the opposing substrate. The LCD has enhanced display brightness and higher outdoor viewability in the case of outdoor display.
Abstract:
A touch display comprises a color filter substrate, an array substrate opposite to the color filter via a plurality of spacers and a voltage detection circuit. The color filter substrate comprises an upper substrate and a common electrode formed on the upper substrate, and the array substrate comprises a lower substrate and a gate line, a data line and a pixel electrode formed on the lower substrate. The plurality of spacers comprise a first spacer formed between the gate line and the common electrode and a second spacer formed between the data line and the common electrode , which are capable of electrically connecting the common electrode with the gate line and the data line respectively under an external pressure more than a threshold value. The voltage detection circuit is connected with the gate line and the data line so as to detect whether the voltage on the gate line and the voltage on the data line become equal to the voltage of the common electrode.
Abstract:
A manufacturing method of a thin film transistor and a thin film transistor are provided. In the manufacturing method, formation of pattern of a source electrode (7), a drain electrode (8) and an active layer (6) comprises: forming a semiconductor layer (10) and a conductive layer (11) that cover the whole substrate on the substrate in sequence; forming a first photoresist layer (4) at a region where the source electrode is to be formed and at a region where the drain electrode is to be formed on the conductive layer (11), respectively; forming a second photoresist layer (5) at least at a gap between the source electrode and the drain electrode that are to be formed on the conductive layer (11); conducting an etching process on the substrate with the first photoresist layer (4), the second photoresist layer (5), the semiconductor layer (10) and the conductive layer (11) formed thereon, so as to form pattern of the active layer (6), the source electrode (7) and the drain electrode (8).
Abstract:
The embodiment provides a touch screen and a display device. The touch screen has: a first substrate and a second substrate arranged in opposite to each other, and a touch-driving electrode and a touch-sensing electrode arranged in a crossing manner on the first substrate and the second substrate, a non-flat region is provided at a region of the first substrate on which the touch-sensing electrode is to be formed, and the touch-sensing electrode is arranged on the first substrate in accordance with a shape of the first substrate so as to be formed with a non-flat region; and/or a non-flat region is provided at a region of the second substrate on which the touch-driving electrode is to be formed, and the touch-driving electrode is arranged on the second substrate in accordance with a shape of the second substrate so as to be formed with a non-flat region.
Abstract:
A flexible support plate and a flexible display device. The flexible support plate includes an opening area and at least one solid area arranged on at least one side of the opening area, wherein the opening area is provided with a plurality of through holes; the opening area includes a middle area and a transition area; the transition area is arranged between the middle area and the solid area; and the width of the transition area decreases as the distance to the middle area increases.
Abstract:
The present disclosure provides a display screen and a display apparatus, the display screen comprising: a special-shaped display panel (01) of an irregular closed shape, and a display driving circuit (02) which is bonded at any edge of the special-shaped display panel (01) and configured to supply respective signals to gate lines and data lines in the special-shaped display panel (01).
Abstract:
The present invention relates to a production apparatus of display device, and provides a substrate carrying device and a substrate regularity detecting method. The carrying device comprises: a carrying platform; a support frame; a signal transmitter; a signal receiver and a control device. The benefits of the invention are that by means of adopting the signal detecting device and the control device to detect the regularity of the substrates placed in the substrate carrying device, the detection of the placement of the substrates is realized, when some problems occurs, the operators can realize in time, the happening of bump damage to the substrates in the following process when taking out is avoided, and the safety of the substrates is increased.
Abstract:
An array substrate includes a thin film transistor (1) and a pixel electrode (2) disposed on the thin film transistor; an insulation layer is disposed between the pixel electrode and the thin film transistor, the pixel electrode (2) is connected to a drain electrode (11) of the thin film transistor via a through hole (3) disposed in the insulation layer, the pixel electrode (2) partially covers an edge of the through hole (3) in an orthographic projection direction. The array substrate not only avoids a short circuit between the pixel electrodes, but also properly increases an area of a pixel electrode and the number of and numbers, so that an aperture ratio and a resolution of a display product can be enhanced.
Abstract:
A method for preparing a multi-layer substrate, which includes: forming a first film layer on a substrate, and forming a group of alignment marks in alignment areas of the first film layer; and forming a plurality of subsequent film layers and a top film layer on the first film layer in sequence; in the patterning process for each subsequent film layer, alignment marks in a mask plate for the subsequent film layer are aligned with the alignment marks in the first film layer, and photoresist coated on the subsequent film layer is subjected to exposure; and in a patterning process of the subsequent film layer, photoresist patterns, formed by the alignment marks in the mask plate at pattern positions of the alignment marks of the first film layer when the photoresist coated on the subsequent film layer is subjected to exposure, are removed. The method improves the alignment accuracy between the patterns of the formed subsequent film layer.
Abstract:
An array substrate, a manufacture method of the array substrate, and a display panel are configured to achieve a combination of solar energy technology and the OLED display technology. The array substrate includes substrate, scanning lines, data lines, a thin film transistor (TFT), a common electrode and a pixel electrode. The array substrate further includes a light-emitting structure configured to provide a backlight source, a solar cell structure and a power output line. The light-emitting structure is provided between the common electrode and the pixel electrode. The solar cell structure is provided between the substrate and the common electrode. The power output line is provided in a same layer as the common electrode and is electrically connected to the solar cell structure so as to transmit electric energy generated by the solar cell structure to an external circuit.