Abstract:
Embodiments of the present disclosure provide a flexible sensor, including a flexible substrate; a plurality of ultrasonic detectors, on the flexible substrate; and a plurality of detection circuits, respectively corresponding to the ultrasonic detectors; wherein each of the detection circuits is between the flexible substrate and the corresponding ultrasonic detector, and configured to drive the ultrasonic detector to emit an ultrasonic wave, and detect a detection signal output by the ultrasonic detector after receiving the ultrasonic wave; each of the ultrasonic detectors includes: a first electrode coupled to the corresponding detection circuit, a second electrode on a side of the first electrode away from the flexible substrate, and a piezoelectric induction layer between the first electrode and the second electrode; a plurality of holes are provided in a region other than a region where the detection circuits are located.
Abstract:
The present application provides a light emitting chip, a manufacturing method for the same, and a light emitting device, relating to the field of display technology. The light emitting chip includes a substrate and a plurality of light emitting units arranged in an array on the substrate. The light emitting unit includes at least one first electrode disposed on the substrate and a plurality of epitaxial wafers arranged in an array, at least two of the epitaxial wafers have different colors. Several epitaxial wafers in the epitaxial wafers share one of the first electrodes.
Abstract:
A display substrate includes a base substrate, and a plurality of light emitters and a plurality of light sensors over the base substrate. The light emitters and light sensors are configured to respectively emit lights towards, and sense lights reflected by, a pattern to be detected, such as a fingerprint. At least one light emitter includes a first electrode, a light-emitting layer, and a second electrode, sequentially over the base substrate. At least one light sensor includes a third electrode, a photosensitive layer, and a fourth electrode, sequentially over the base substrate. The first electrode and the third electrode are integral or the second electrode and the fourth electrode are integral. A method of using the display substrate to identify a pattern such as a fingerprint can be employed by a display panel containing the display substrate.
Abstract:
The present disclosure provides an array substrate, its manufacturing method, and a display device. The method includes steps of forming a passivation layer on a base substrate, and forming a contact layer and a pixel electrode on the base substrate with the passivation layer through a single patterning process. The contact layer is made of an identical transparent conductive material to the pixel electrode.
Abstract:
The present invention provides an array substrate and a manufacturing method thereof and a display device. The manufacturing method comprises: forming a pattern including a pixel electrode and a source of a thin film transistor on a base substrate through a single patterning process, the pixel electrode is provided in a layer under a layer in which the source is located; forming a pattern including a drain, an active layer, a gate insulation layer and a gate of the thin film transistor through a single patterning process, the active layer covers the source and the drain, and is separated from the gate through the gate insulation layer; and forming a pattern including a passivation layer, a common electrode and a gate line through a single patterning process, the common electrode is a slit electrode and separated from the active layer and the pixel electrode through the passivation layer.
Abstract:
The present disclosure provides an array substrate, including a plurality of sub-pixel regions arranged in a matrix form. Each sub-pixel region may at least include a first thin film transistor (TFT) and a second thin film transistor. The first thin film transistor may include a first gate electrode, a first source electrode and a first drain electrode. The second thin film transistor may include a second gate electrode, a second source electrode and a second drain electrode. The first gate electrode and at least one of the second source electrode and the second drain electrode may be provided on a same layer. The second gate electrode and at least one of the first source electrode and the first drain electrode may be provided on a same layer. The second gate electrode and the first source electrode may be integrated together.
Abstract:
The present disclosure provides a display panel and a manufacturing method of the display panel, and a display apparatus, and belongs to the field of display technology. The display panel of the present disclosure includes a flexible substrate and a support substrate, wherein the support substrate supports the flexible substrate; a plurality of display units are provided on the flexible substrate; the display panel further includes: a first magnetic unit; a second magnetic unit; the first magnetic unit and the second magnetic unit are used for jointing the flexible substrate to the support substrate through a magnetic field therebetween.
Abstract:
A touch panel, a manufacturing method thereof and a display device are provided. The touch panel includes a first touch electrode, a second touch electrode and a one-piece insulating element. The second touch electrode includes an electrode section disposed in a same layer as the first touch electrode and a connecting section under the electrode section. The electrode section includes a first electrode section and a second electrode section, which are electrically connected by the connecting section, and the connecting section is spaced apart from the first touch electrode. The insulating element includes a first insulating section between the connecting section and the first touch electrode and a second insulating section between the first electrode section and the first touch electrode and also between the second electrode section and the first touch electrode. The insulating sections can be obtained by performing a patterning process, so that the manufacturing method of the touch panel is simplified.
Abstract:
A preparation method of a poly-silicon thin film transistor (TFT) array substrate and an array substrate thereof are provided. The preparation method includes: forming a photoresist layer on a poly-silicon layer, and exposing and developing the photoresist layer with a gray tone mask to form patterns of a photoresist completely-reserved region, a photoresist partially-reserved regions and a photoresist completely-removed region; removing part of the poly-silicon layer located in the photoresist completely-removed region, to form patterns of active layers; ashing the photoresist so as to expose part of the active layer located in the photoresist partially-reserved regions and inject P+ ions of high concentration into the part of the active layer, to form doping regions of patterns of source-drain electrodes of a P-type TFT; and stripping off remaining photoresist.
Abstract:
A preparation method of a poly-silicon thin film transistor (TFT) array substrate and an array substrate thereof are provided. The preparation method includes: forming a photoresist layer on a poly-silicon layer, and exposing and developing the photoresist layer with a gray tone mask to form patterns of a photoresist completely-reserved region, a photoresist partially-reserved regions and a photoresist completely-removed region; removing part of the poly-silicon layer located in the photoresist completely-removed region, to form patterns of active layers; ashing the photoresist so as to expose part of the active layer located in the photoresist partially-reserved regions and inject P+ions of high concentration into the part of the active layer, to form doping regions of patterns of source-drain electrodes of a P-type TFT; and stripping off remaining photoresist.