Abstract:
A technique to provide hybrid compensation to correct for drifts in a reference frequency output from a digitally-controlled crystal oscillator (DCXO). A first compensation is provided to the DCXO to adjust for overlap or discontinuity of the reference frequency caused by switching capacitors in the capacitor array that controls drift of the reference frequency output. The second compensation is obtained at a phase-locked loop (PLL) that receives the reference frequency signal from the DCXO. The second compensation adjusts the PLL to adjust for variations of the reference frequency that remain after performing compensation in the DCXO.
Abstract:
A programmable transmitter circuit may be coupled to a controller circuit. The controller circuit may be configured to generate control signals based at least on a signal. The transmitter circuit may include a plurality of unit cells. Each unit cell may include a respective first current source and a respective second current source. Each unit cell may be configured to be set in an activated state or a deactivated state based at least on the control signals. For a unit cell of the plurality of unit cells, when the unit cell is set in the activated state, the respective first current source or the respective second current source may be configured to generate a current to be applied to a load.
Abstract:
A single hybrid receiver is provided for processing both single carrier and carrier aggregated (CA) communications signals where carriers are split into independent receive paths without any additional external components. The receiver receives all contiguous and non-contiguous intra-band CA and inter-band CA signals allowing for improved rejection and balanced rejection of jamming signals on either side of the two carrier signals.
Abstract:
A receiver includes a radio frequency (RF) front end receives a received signal that is modulated via orthogonal frequency division multiplexing (OFDM) and generates a downconverted signal, based on the received signal. An OFDM demodulator generates subcarrier data based on the downconverted signal. The subcarrier data corresponds to a plurality of subcarriers. A subcarrier weighting module generates weighted subcarrier data by applying subcarrier weights to the subcarrier data corresponding to selected ones of the plurality of subcarriers. An OFDM decoder generates decoded OFDM data based on the weighted subcarrier data.
Abstract:
Various configurations and arrangements of systems and methods for providing multi-carrier aggregation are described. A system in accordance with the disclosure can include a first mixer configured to receive a first signal in a first frequency band, a second mixer configured to receive a second signal in a second frequency band, a third mixer configured to receive the second signal in the second frequency band, and a fourth mixer configured to receive a third signal in a third frequency band. The system can further include a controller configured to selectively activate one of the first mixer and the second mixer, and selectively activate one of the third mixer and the fourth mixer.
Abstract:
A technique to provide hybrid compensation to correct for drifts in a reference frequency output from a digitally-controlled crystal oscillator (DCXO). A first compensation is provided to the DCXO to adjust for overlap or discontinuity of the reference frequency caused by switching capacitors in the capacitor array that controls drift of the reference frequency output. The second compensation is obtained at a phase-locked loop (PLL) that receives the reference frequency signal from the DCXO. The second compensation adjusts the PLL to adjust for variations of the reference frequency that remain after performing compensation in the DCXO.
Abstract:
Embodiments provide improved systems and methods of gain control and calibration for wireless transmitters. In particular, embodiments allow linear gain control over the entire transmitter gain control range, independent of temperature/process variations. Embodiments require very low power consumption compared to existing approaches. Embodiments may also be used for gain control calibration during production time, thereby substantially reducing production calibration time and cost.
Abstract:
A device implementing the subject scalable radio frequency communication system includes one or more primary radio frequency integrated circuits (RFICs) and at least one secondary RFIC. Each of the one or more primary RFICs is configured to receive an intermediate frequency (IF) signal from a baseband processor, upconvert the IF signal to a radio frequency (RF) signal, and transmit the RF signal to one or more secondary RFICs. The secondary RFICs under each of the one or more primary RFICs are configured to receive the RF signal from the corresponding primary RFIC, phase shift and amplify the RF signal, and transmit the RF signal via a plurality of antenna elements.
Abstract:
A system includes baseband circuitry and a transmitter. The electrical behavior of the transmitter may cause distortion effects in the transmit output of the transmitter during transmissions based on input signals from the baseband circuitry. The baseband circuitry may reference a calibration evaluation function for multiple transmit variables to pre-distort the input signal to compensate for the distortion effect. Pre-distortion calibration logic may generate the evaluation function using a one-dimensional calibration technique. The evaluation function may facilitate the baseband accessing calibration data without necessarily relying on a look-up table. In some cases, a one-dimensional calibration for multiple transmit variables may use fewer calibration points than a similarly accurate multi-dimensional calibration.
Abstract:
According to one embodiment, a compact low-power receiver comprises a front-end producing a front-end gain and a back-end producing a back-end gain. The front-end includes a transconductance amplifier providing digital gain control and outputting an amplified receive signal, a mixer for generating a down-converted signal from the amplified receive signal, and a transimpedance amplifier (TIA) including a current mode buffer. The TIA provides gain control for amplifying the down-converted signal to produce a front-end output signal. In one embodiment, the back end includes a second-order low-pass filter to produce a filtered signal from the front-end output signal and an analog-to-digital converter (ADC), wherein the filtered signal is fed directly to the ADC without direct-current (DC) offset cancellation being performed. In various embodiments, the front-end gain is substantially greater than the back-end gain.