Abstract:
A composition includes an organopolysiloxane component (A) comprising at least one of a disiloxane, a trisiloxane, and a tetrasiloxane, and has an average of at least two alkenyl groups per molecule. The composition further includes an organohydrogensiloxane component (B) having an average of at least two silicon-bonded hydrogen atoms per molecule. Components (A) and (B) each independently have at least one of an alkyl group and an aryl group and each independently have a number average molecular weight less than or equal to 1500 (g/mole). The composition yet further includes a catalytic amount of a hydrosilylation catalyst component (C), and titanium dioxide (TiO2) nanoparticles (D). The composition has a molar ratio of alkyl groups to aryl groups ranging from 1:0.25 to 1:3.0. A product of the present invention is the reaction product of the composition, which may be used to make a light emitting diode.
Abstract:
A photonic structure for “white” light generation by phosphors under the excitation of a LED. The photonic structure mounts the LED and an optically transparent matrix having dispersed therein phosphors which will emit light under the excitation of the radiation of the LED. The transparent matrix may include nanoparticles for matching the index of refraction of the material of the matrix to that of the light generating phosphors. The matrix material may be readily formed by molding and formed into a variety of shapes including lenses for focusing the emitted light. A large number of the photonic structures may be arranged on a substrate to provide even illumination or other purposes. The phosphors dispersed in the matrix are preferably nanocrystalline.
Abstract:
A microchannel phosphor screen for converting radiation, such as X-rays, into visible light. The screen includes a planar surface, which can be formed from glass, silicon or metal, which has etched therein a multiplicity of closely spaced microchannels having diameters of the order of 40 microns or less. Deposited within each of the microchannels is a multiplicity of phosphors which emit light when acted upon by radiation. The dimensions of the microchannel and the phosphors and the relationship between the microchannels and the phosphors is optimized so that the light output compares favorably with lower resolution non microchannel based scintillation screens. A photomultiplier can be integrated with the X-ray detector so as to provide an enhanced output for use with low level X-ray of for cine or fluoroscopy applications.
Abstract:
A composite phosphor screen for converting radiation, such as X-rays, into visible light. The screen includes a planar surface, which can be formed from glass, silicon or metal, which has etched therein a multiplicity of closely spaced microchannels having diameters of the order of 10 microns or less. Deposited within each of the microchannels is a multiplicity of phosphors which emit light when acted upon by radiation. A photomultiplier, which may be microchannel based, is integrated with the X-ray detector so as to provide an enhanced output for use with low level X-ray of for cine or fluoroscopy applications. The walls of the microchannels and/or the substrate surfaces include dielectric stack based light reflective coatings.
Abstract:
Active acceptor concentrations of p-doped II-VI and III-V semiconductor compound layer provided by chemical vapor deposition are increased by photo-assisted annealing.
Abstract:
A flip chip light emitting diode die (10, 10′, 10″) includes a light-transmissive substrate (12, 12′, 12″) and semiconductor layers (14, 14′, 14″) that are selectively patterned to define a device mesa (30, 30′, 30″). A reflective electrode (34, 34′, 34″) is disposed on the device mesa (30, 30′, 30″). The reflective electrode (34, 34′, 34″) includes a light-transmissive insulating grid (42, 42′, 60, 80) disposed over the device mesa (30, 30′, 30″), an ohmic material (44, 44′, 44″, 62) disposed at openings of the insulating grid (42, 42′, 60, 80) and making ohmic contact with the device mesa (30, 30′, 30″), and an electrically conductive reflective film (46, 46′, 46″) disposed over the insulating grid (42, 42′, 60, 80) and the ohmic material (44, 44′, 44″, 62). The electrically conductive reflective film (46, 46′, 46″) electrically communicates with the ohmic material (44, 44′, 44″, 62).
Abstract:
X-ray imaging screens utilizing phosphors disposed in microchannels disposed in a plate. This application relates to the “tiling” of such microchannel plates to form a larger imaging area and to the use of “storage phosphors” in the microchannel plates which enables the phosphors to be read out after exposure and from the side exposed to the X-rays. The storage phosphor screens of the present invention provide significantly increased resolution than the prior art storage phosphor screens.
Abstract:
A composite phosphor screen for converting radiation, such as X-rays, into visible light. The screen includes a planar surface, which can be formed from glass, silicon or metal, which has etched therein a multiplicity of closely spaced microchannels having diameters of the order of 10 microns or less. Deposited within each of the microchannels is a multiplicity of phosphors which emit light when acted upon by radiation. The walls of the microchannels and/or the substrate surfaces include light reflective coatings so as to reflect the light emitted by the phosphors to the light collecting devices, such as film or an electronic detector. The coatings can be either radiation transparent or filtering/attenuating depending on the particular application.
Abstract:
Semiconductor compounds and a method for producing the same are provided wherein a method for growing at least one epitaxial layer of a II-VI semiconductor compound using MOVPE is used, the method including the steps of subjecting a substrate to organometallic and hydride precursor compounds in a MOVPE reactor at ultra low pressure, i.e. a pressure in the range of about 10 to 1 mTorr, whereby the organometallic and hydride precursor compounds react at a substrate surface without substantial reaction in the gas phase. The epitaxial layers and semiconductor compounds are useful in blue laser devices.