Abstract:
A clutch actuator is provided for operating a clutch between a drive motor and a gearbox on a motor vehicle, in particular a commercial vehicle, including a linearly operating pin, acting on a release mechanism which is coaxial to a mid-axis of the clutch. The pin is arranged in a plane essentially perpendicular to the mid-axis of the clutch and coupled eccentrically to a rotating body of a gear mechanism, converting the rotating movement thereof into a linear movement of the release mechanism.
Abstract:
To provide for adaptive change of the operating characteristics of an engine, so that it will operate at its optimum effectiveness, just below the knocking limit, while reliably preventing knocking thereof, a computer receives engine data from respective sensors and a knock sensor (5), from which the computer calculates, based on data stored in a memory (3), operating parameters for the engine (1). The engine is, for example, an Otto-type internal combustion engine (ICE) or a Diesel engine. The operating characteristics, as computer-modified based on sensed knocking, and the modification data, are then placed into the memory to modify the basic memory content. Preferably, the memory has a basic memory content section and a programmable differential or modification section, in which algebraic constants or modifying factors are stored, based on actual experience of operation of the engine, just under the knocking limit. Thus, the stored data on which the engine operation is controlled is continuously up-dated based on actual engine operating conditions, and thereby compensating for ageing, wear and tear of parts, different fuels, or environmental conditions or the like. The computer can likewise recognize substantial deviation of the modified characteristics from the basic characteristics and, if the modifications exceed a certain limit, provide an error or malfunction output signal to an error or malfunction output indicator (9, 4) and go into a fail-safe mode.
Abstract:
A cyclical input signal for the microcomputer of a motor vehicle is caused to reset the microcomputer for avoiding persistence of errors. Another portion of the same periodic signal can advantageously be furnished to the external interrupt input of the microcomputer.
Abstract:
A disc brake is provided with an actuator acting on a brake application device, which brake application device is used for applying at least one brake pad to a brake disc. The brake application device has a brake-internal hydraulic arrangement and is configured in a self-energizing mode. The brake pad is supported on the brake application device at a wedge angle and the wedge angle of the brake pad is adjusted by the hydraulic arrangement of the brake application device.
Abstract:
A method for recognition of the power stroke of an internal combustion engine is proposed, in which recognition as to whether a cylinder is currently in the power stroke is possible by means of camparison of a signal that is synchronous with the crankshaft angle and a signal that is modulated by the combustion events of the engine.
Abstract:
To prevent slow reestablishment of operating conditions which might lead to knocking of an internal combustion engine if the internal combustion engine operates under transient conditions, for example under conditions of rapid acceleration, the reestablishment rate of an operating control signal, for example ignition timing which, after retardation, is again advanced, transient speed changes are sensed in a differentiator (17) and, if so sensed, cause reestablishment of prior operating condition at a faster rate (f3) than otherwise, normally set into the system (see f2, FIG. 2). Additionally, the reference level of a comparator which compares sensed engine vibration signals with a reference can be increased so that, due to increased engine noise, erroneous knocking signals will not be generated by the comparator. Function generators (18, 19) which provide changed reference levels or signal weighting levels as a function of the degree or characteristics of transience, are preferably provided so that the system will respond dynamically.
Abstract:
A demodulated audio signal for detection of engine-knock is digitalized to produce a sequence of digital signals corresponding to the various cylinders of the engine in turn. These digital signals are recursively filtered by applying a factor k to a newer value and its complement (1-k) to an older value from the same cylinder or a value obtained therefrom by partial filtering and the sum of the two factor-modified terms is formed to provide a reference value with which the most recent digital signal is compared, to produce an indication of engine-knock when the latter exceeds a reference value by a predetermined amount. The factor k is varied in accordance with acceleration of engine speed or with the level of signals from the vibration sensor that exists before the application of automatic gain control prior to integration. The system, which can be implemented mostly in the software of a microcomputer, also includes provisions for adjusting from time to time minimum reference signal values for each of the cylinders, which are to be substituted for the reference signal values contemporaneously produced by recursive filtering if the latter fail to exceed the former in magnitude, and also for determining, at appropriate times, failures of the knock detection system from the absence of normal variations between the integrated signals from the respective cylinders, and providing corrective action in response thereto.
Abstract:
To recognize knocking conditions in signals derived from a knock sensor, which signals representative of knocking may be masked by background or noise signals, and to clearly distinguish the knocking signal from background or noise signals, the knocking signals are integrated with respect to measuring or strobing intervals during a predetermined angle of crankshaft rotation, digitized in an A/D converter (7) and then compared in a comparator (9) with the same signals which have been passed through a low-pass digital filter (8) to compare the integrated, digitized signal of a then occurring combustion process or event with similar signals of prior combustion processes or events to thereby recognize and distinguish knocking signal conditions from noise signal conditions; digital filtering and comparison as well as sequence timing can be carried out in a single microprocessor (FIGS. 2:14), earlier combustion events being weighted in accordance with the remoteness of their occurrence and/or engine speed and engine loading, the reference signal, for example, being generated in accordance with the formula:y(t.sub.i)=(1-k).y(t.sub.i-1)+kx(t.sub.i)whereiny(t.sub.i) is the reference signal;i is the count index of the respective number of combustion cycles of the respective cylinder;x(t.sub.i) is the instantaneous digitized integrated value; and k is the weighting factor with which the then pertaining digitized integrated value is weighted to form the new reference value.Combustion processes which resulted in knocking can be eliminated from forming part of the comparison.
Abstract:
An apparatus is described for activating at least one driver's cab actuator element and/or at least one seat actuator element and/or at least one steering column actuator element of a commercial vehicle.
Abstract:
An apparatus is described for activating at least one driver's cab actuator element and/or at least one seat actuator element and/or at least one steering column actuator element of a commercial vehicle.