Abstract:
The present invention provides stencil-based processes for fan-out wafer-level packaging (“FOWLP”) that addresses the limitations associated with prior art over-molding of dies. In the inventive process, a temporary carrier is coated with a release layer and curable adhesive backing layer. A die stencil film is then laminated to the coated carrier, and the dies are placed inside pre-formed cavities created in the laminated stencil. The gaps between the dies and the stencil are filled with a curable polymeric material, and a redistribution layer is constructed according to conventional processes. This process results in better repeatability, lower bowing in the carrier, and enhanced downstream processing.
Abstract:
Multiple bonding layer schemes that temporarily join semiconductor substrates are provided. In the inventive bonding scheme, at least one of the layers is directly in contact with the semiconductor substrate and at least two layers within the scheme are in direct contact with one another. The present invention provides several processing options as the different layers within the multilayer structure perform specific functions. More importantly, it will improve performance of the thin-wafer handling solution by providing higher thermal stability, greater compatibility with harsh backside processing steps, protection of bumps on the front side of the wafer by encapsulation, lower stress in the debonding step, and fewer defects on the front side.
Abstract:
Methods are disclosed to prepare permanent materials that can be coated onto microelectronic substrates or used for other structural or optical applications. The materials are thermally stable to at least about 300° C., curable using a photo or thermal process, exhibit good chemical resistance (including during metal passivation), and have a lifespan of at least about 5 years, preferably at least about 10 years, in the final device. Advantageously, these materials can also be bonded at room temperature. The materials exhibit no movement or squeeze-out after bonding and adhere to a variety of substrate types.
Abstract:
Dielectric materials with optimal mechanical properties for use in laser ablation patterning are proposed. These materials include a polymer selected from the group consisting of polyureas, polyurethane, and polyacylhydrazones. New methods to prepare suitable polyacylhydrazones are also provided. Those methods involve mild conditions and result in a soluble polymer that is stable at room temperature and can be incorporated into formulations that can be coated onto microelectronic substrates. The dielectric materials exhibit high elongation, low CTE, low cure temperature, and leave little to no debris post-ablation.
Abstract:
A process is disclosed for using two polymeric bonding material layers to bond a device wafer and carrier wafer in a way that allows debonding to occur between the two layers under low-force conditions at room temperature. Optionally, a third layer is included at the interface between the two layers of polymeric bonding material to facilitate the debonding at this interface. This process can potentially improve bond line stability during backside processing of temporarily bonded wafers, simplify the preparation of bonded wafers by eliminating the need for specialized release layers, and reduce wafer cleaning time and chemical consumption after debonding.