摘要:
The invention is directed to eluting medical devices that enable consistent “on-demand” delivery of therapeutic agents to a vessel. The medical device of the current invention comprises an expandable member, a hydrophilic coating comprising at least one therapeutic agent about the expandable member or structural layer and an outer sheath with a variably permeable microstructure. The design and methods disclosed herein ensures that therapeutic agent delivery occurs essentially only during expansion of the expandable member, minimizing coating and/or therapeutic agent loss to the bloodstream and providing controlled delivery to the treatment site.
摘要:
A physiological event signal sensing system in a cardiac control or monitoring device for detecting spontaneous cardiac electrical events which may be obscured by continuous or burst EMI line frequency noise. The noise rejecting sensing system of this invention senses and samples cardiac signals which may include a noise component which is produced by power line interference in addition to a physiological signal component. The sampling frequency is selected to be an integer multiple of at least one common power line frequency. The system notch filters the cardiac signal to remove line frequency components, using either or both lowpass and highpass notch filtering coefficients, then limits the filtered output to the amplitude of the corresponding filter input to remove filter output signals caused by the sudden termination of line frequency noise which is characteristic of burst noise.
摘要:
A layered electrode having a large tissue contact area of the portion of the electrode that is electrically active and providing low polarization losses, high pacing impedance and low chronic stimulation voltage. In a fundamental embodiment, the electrode tip has an outer layer of microporous material which is permeable to conductive body fluids which covers a layer of insulating material which is provided with at least one perforation through the thickness of the material. The at least one perforation provides a localized, high current density path. Both of these layers in turn cover the exterior surface of an electrically conductive, preferably metal, electrode body. The present invention is, in a preferred embodiment, a multiple layered device having, in sequence, a) an external layer promoting tissue attachment, b) a cell exclusion layer, which prevents tissue ingrowth into the subsequent underlying layers while allowing passage of conductive fluids, c) a third layer of substantially electrical insulating material with selected or tailored perforations or through holes which provide high current density paths, d) a fourth layer that contains a electrically conductive material of high surface area and e) a fifth metallic layer of a high surface area electrode.
摘要:
A method and apparatus for detecting cardiac arrhythmias in a patient's heart is disclosed. The monitoring method and apparatus sense cardiac electrical signals when the heart is functioning in a known cardiac state, then characterize this known cardiac state by storing a temporally compressed template of time sequence samples. The method and apparatus allow testing during multiple different cardiac states and provide for storage of templates associated with each state. Subsequently, when the heart is functioning in an unknown cardiac state, the method and apparatus monitor cardiac electrical signals by temporally compressing samples and scan correlating these samples with the previously stored template sequences to derive correlation coefficients. The method and apparatus then use these correlation coefficients to characterize cardiac function.
摘要:
A method and apparatus for storing a representation of a cardiac signal by compressing the data using scan correlation and temporal data compression techniques. The method and apparatus sense cardiac signals when the heart is functioning in a known cardiac state, then characterize this known state by storing a temporally compressed template of time sequence samples. The method and apparatus may perform testing for multiple different cardiac states and store templates associated with each state. Subsequently when the heart is functioning in an unknown cardiac state, the method and apparatus monitor cardiac signals by temporally compressing samples and scan correlating these samples with the previously stored templates to derive correlation coefficients. These correlation coefficients are a basis for identifying and classifying cardiac signal waveforms. For waveforms which correlate highly with a particular template, analysis of the timing of the maximum correlation coefficient provides a fiducial time which designates the time relationship of waveforms within different cardiac cycles. The method and apparatus store information in the form of templates, fiducial timing markers, and waveform occurrence counts. This data provides the information necessary to subsequently reproduce a long-term signal record.
摘要:
A clinical programming system for use with an implanted cardiac pacemaker to automatically determine the minimum pacing energy which is necessary to evoke an atrial depolarization. The system utilizes a series of pacing pulses of progressively decreasing energies to stimulate the atrium, and detects an evoked response during the AV delay interval that follows each pulse. Initial P-wave intervals are subjected to morphological analysis to generate a P-wave template. Subsequent intervals are similarly analyzed and the results compared with the template. The absence of similarity with the template indicates the loss of atrial capture and that the minimum pacing energy has been reached.
摘要:
A method and apparatus for aligning periodic cardiac signal waveforms for the purpose of signal averaging over a number of cardiac cycles. The aligning method and apparatus sense cardiac electrical signals over a number of cardiac cycles, store a template characterizing these signals, reduce the data rate of the same sensed signals by temporal data compression, and store a compressed template sequence. Subsequently, the method and apparatus perform signal averaging by monitoring cardiac electrical signals, storing samples of these signals, temporally compressing these samples and scan correlating the compressed samples with the previously stored compressed template sequence to derive correlation coefficients. Thereafter, the method and apparatus utilize the maximum correlation coefficient to roughly align the monitored waveform with the averaged signal, and then they scan correlate a portion of the noncompressed monitored waveform adjacent to the maximum correlation coefficient with a corresponding portion of the non-compressed template to provide precise alignment of the monitored waveform with the averaged signal.
摘要:
The invention is directed to eluting medical devices that enable consistent “on-demand” delivery of therapeutic agents to a vessel. The medical device of the current invention comprises an expandable member, a hydrophilic coating comprising at least one therapeutic agent about the expandable member or structural layer and an outer sheath with a variably permeable microstructure. The design and methods disclosed herein ensures that therapeutic agent delivery occurs essentially only during expansion of the expandable member, minimizing coating and/or therapeutic agent loss to the bloodstream and providing controlled delivery to the treatment site.
摘要:
A clinical programming system is disclosed for use with an implanted cardiac pacemaker to automatically determine the minimum pacing energy which is necessary to evoke an atrial depolarization. The system utilizes a series of pacing pulses of progressively decreasing energies to stimulate the atrium and detects following R-waves. The absence of an R-wave indicates the loss of atrial capture.
摘要:
A method and apparatus for detecting cardiac arrhythmias are disclosed. The detecting method and apparatus sense cardiac electrical signals when the heart is functioning in a known cardiac state, such as a physiologically normal cardiac state, then define and store an array of amplitude windows wherein each sample in the array of amplitude windows corresponds to a sample of the known cardiac signal. Each amplitude window delineates a range of signal amplitudes bracketing the amplitude of the known cardiac electrical signal sample. The array of amplitude windows corresponds in time to periodically occurring known cardiac signal samples occurring within a predetermined time of interest. Subsequently, when the heart is functioning in an unknown cardiac state, the method and apparatus monitor cardiac electrical signals by time aligning samples and comparing, on a sample by sample basis, the amplitude of unknown state cardiac signal samples with the amplitude range within the stored array of amplitude window samples. The relative number of samples falling outside the amplitude windows is the basis for analyzing cardiac signal morphology for the purpose of detecting cardiac arrhythmias.