Abstract:
Provided is a delta-sigma modulator including a first integral unit configured to integrate an input analog signal, a second integral unit configured to integrate a signal output by the first integral unit, a quantizer configured to quantize a signal output by the second integral unit, a DA converter configured to perform DA conversion on an output of the quantizer and output a feedback signal to be fed back to the first integral unit, and a control unit configured to perform control to cause the first integral unit and the second integral unit to perform different integral operations during a first period and a second period, in which the second integral unit is configured to receive the feedback signal output by the DA converter via the first integral unit and integrate the feedback signal during the first period and the second period.
Abstract:
Provided is a transmission system including: a signal processing apparatus 2 configured to transmit, via a signal cable 4, a delta-sigma modulated signal obtained by performing delta-sigma modulation on a transmission signal that is an RF signal; and a wireless apparatus 3 configured to transmit, via the signal cable 4, a reception signal that is an RF signal. The signal processing apparatus 2 transmits the delta-sigma modulated signal to the wireless apparatus 3, and the wireless apparatus 3 transmits the reception signal to the signal processing apparatus 2. In the delta-sigma modulated signal, quantization noise is suppressed at the frequency of the reception signal. The reception signal is transmitted to the signal processing apparatus 2 while the delta-sigma modulated signal is being transmitted to the wireless apparatus 3.
Abstract:
Provided are a wireless access system provided with a remote unit capable of handling a high-frequency region without being made complicated, and a control method for the same. A wireless access system according to the present invention is provided with: a center unit (1); and a remote unit (3) that converts a baseband signal generated by the center unit (1) into a high-frequency signal and emits the high-frequency signal from an antenna (12). The center unit (1) includes a 1-bit modulator (5) that converts the baseband signal into a 1-bit signal on the basis of a generated clock signal and outputs the 1-bit signal. The remote unit (3) includes: a local generation unit (10) that extracts the clock signal from the 1-bit signal output from the center unit (1), and generates a local signal using the extracted clock signal as a reference signal; a filter (13) that extracts a desired band component from the 1-bit signal; and an up-converter (14) that converts, using the local signal, an output signal of the filter into a high-frequency signal.
Abstract:
The purpose of the present invention is to provide a high-power-efficiency and low-design-cost transmission device by implementing, with a constant clock, delta-sigma modulation maintaining a zero current switching property in an amplifier. This delta-sigma modulator comprises: a pulse phase signal generation unit for generating a pulse phase signal from a phase signal; a delta-sigma modulation unit for generating a pulse amplitude signal obtained by delta-sigma modulating an amplitude signal with a constant clock; a phase sorting unit for outputting a control signal on the basis of the phase signal; a delay switching unit for delaying the pulse amplitude signal on the basis of the control signal; and a mixing unit for outputting a pulse string obtained by multiplying together the delayed pulse amplitude signal and the pulse phase signal.
Abstract:
Reduction in signal intensity of a harmonic component included in an output of a delta-sigma modulator is suppressed. A signal processing device includes: a delta-sigma modulator 11 that outputs a pulse signal; a first processor 12 that generates, from the pulse signal PO outputted from the delta-sigma modulator 11, a discontinuous pulse signal PC in which each of one-pulse sections in the pulse signal PO has a low level region on at least one of a rear end and a front end of the one-pulse section; and a second processor that generates a short-width pulse signal PS having a pulse width shorter than a pulse width of the discontinuous pulse signal PC generated by the first processor 12.
Abstract:
Superconductor analog-to-digital converters (ADC) offer high sensitivity and large dynamic range. One approach to increasing the dynamic range further is with a subranging architecture, whereby the output of a coarse ADC is converted back to analog and subtracted from the input signal, and the residue signal fed to a fine ADC for generation of additional significant bits. This also requires a high-gain broadband linear amplifier, which is not generally available within superconductor technology. In a preferred embodiment, a distributed digital fluxon amplifier is presented, which also integrates the functions of integration, filtering, and flux subtraction. A subranging ADC design provides two ADCs connected with the fluxon amplifier and subtractor circuitry that would provide a dynamic range extension by about 30-35 dB.
Abstract:
A sigma-delta converter may include a filter coupled to a first summation circuit and a second summation circuit. A multi bit quantizer may be coupled to the second summation circuit. A single bit digital-to-analog converter (DAC) may be included that defines a feedback path between the multi-bit quantizer and the first summation circuit. A feed-forward coefficient circuit defining a feed forward path between the first summation circuit and the second summation circuit may be included.
Abstract:
A delta-sigma D/A converter, by which a digital valued, input signal is convertible into a binary, clock signal time discrete, output signal. By forming an average value of the output signal over a number of clock signal cycles, an analog value of the input signal can be displayed. The delta-sigma D/A converter is embodied in such a manner that, in use, it provides the output signal by serial arrangement of signal patterns of a set of signal patterns, wherein the signal patterns of the set are, in each case, binary, clock signal time discrete and extend over a signal pattern cycles total of a plurality of clock cycles. At least two signal patterns of the set have mutually different signal pattern average values, which are formed over the respective signal pattern cycles total, and all signal patterns of the set have, in each case, essentially the same number, especially exactly the same number, of edges.
Abstract:
A time integrator integrates time axis information represented by a phase difference between two signals. The time integrator includes a pulse generation circuit configured to convert a time difference between edges of two input signals to a difference between pulse widths of two pulse signals, and to output the two pulse signals, a load circuit having load characteristics changed by the two pulse signals, and an oscillation circuit coupled to the load circuit, and having an oscillation frequency changing in accordance with the load characteristics of the load circuit. An output of the oscillation circuit is output as a result of time integration.
Abstract:
An improved quadrature bandpass-sampling delta-sigma analog-to-digital demodulator is provided, which includes a loop filter, an A/D responsive to the loop filter, and a first feedback D/A responsive to the A/D up-converted in frequency by a first multiplier and a clock. A first summing circuit is responsive to the first D/A and an RF input for providing an input to the loop filter. A plurality of feedback D/As is responsive to the A/D up-converted in different frequencies by a plurality of multipliers and a plurality of clocks for providing feedback inputs to the loop filter. The loop filter comprises a plurality of resonators arranged in cascade configuration, a plurality of analog mixers to provide frequency shifting of the error signals propagating through the resonators, and a plurality of summing circuits responsive to the feedback D/As.