Abstract:
The present invention discloses a device and a method for detecting the tension on a guide rope of a hanging scaffold in a construction shaft. The guide rope is released by a winch, rounds over a hoisting sheave, is connected to the hanging scaffold, and then is tensioned up; the hoisting sheave is disposed at a position above the winch, and the device comprises a slide device, two tension ropes, and a pull rope, wherein, the slide device is fitted around the guide rope, the two tension ropes are fixed to the two sides of the slide device respectively and arranged parallel to the guide rope, the pull rope is fixed to the lower part of the slide device and arranged perpendicular to the guide rope. On the basis of the basic principles of mechanics, the force applied on the guide rope can be calculated indirectly according to the proportional relation between the forces applied on the tension rope and guide rope and the lengths of the ropes. The device disclosed in the present invention is simple, and the method disclosed in the present invention is skillful. The device and method are applicable to thick and thin steel wire ropes and highly universal, and are low in cost.
Abstract:
A roadway/tunnel excavation robot and an automatic cutting control method are provided. The robot includes a rack, a walking platform, a supporting and stabilizing mechanism, a milling mechanism, a telescoping mechanism, an inclined cutting feed adjusting mechanism, a horizontal swinging mechanism, a lifting mechanism and a controller. The milling mechanism includes a drive unit, a milling shaft, an eccentric rotary casing, a high-pressure jet nozzle unit, a tension and compression sensor and a direction sensor. Through the deflection of a center line of an inner hole of the eccentric rotary casing, the milling mechanism drives a milling cutter head to carry out a rotational oscillation motion for rock breaking. The telescoping mechanism, the inclined cutting feed adjusting mechanism, the lifting mechanism and the horizontal swinging mechanism are controlled such that the milling mechanism performs coal rocks milling.
Abstract:
A large-tonnage skip anti-blocking system includes a skip, wherein two parallel rows of guide rails are fixed to upper and lower shaft walls of a shaft on two sides of the skip correspondingly, a plurality of pulleys are mounted on the guide rails in a matched mode, impact plates are mounted between the upper and lower pulleys, front plates of the impact plates are mounted between the upper and lower sets of pulleys in the front row, rear plates of the impact plates are mounted between the upper and lower sets of pulleys in the back row, a length of rib plates of the impact plates is greater than a width of the skip, hydraulic cylinder bases and vibration motors are mounted on outer sides of the rib plates at intervals.
Abstract:
A movable belt breakage prevention and catching system for a belt conveyor includes a detection device, two tracks, a plurality of catching devices, and a control system. The detection device is mounted on the belt conveyor, and is configured to detect whether a belt of the belt conveyor has a crack. The two tracks are symmetrically arranged on both sides of the belt conveyor, and the plurality of catching devices are symmetrically arranged on the two tracks. The control system is configured to control the plurality of catching devices to simultaneously catch the belt firmly when the detection device detects that the belt has a crack; and after firmly catching the belt, each catching device is able to unidirectionally move along with the belt along the track where the catching device is positioned.
Abstract:
A reliability robust design method for multiple failure modes of an ultra-deep well hoisting container, including: defining randomness of a structural parameter, a material property, and a dynamic load of a hoisting container, and solving a random response of a structural failure for a random parameter using a design of experiment method; establishing reliability performance functions of each failure modes in accordance with failure criterion of the hoisting container; establishing a joint probability model of correlated failures using a copula theory in consideration of probability correlation between the failure modes; establishing, a system reliability model with failure correlation of the hoister container; establishing a sensitivity model concerning each random parameter for system reliability of the hoisting container; and establishing, in conjunction with an optimization design model, a reliability robust optimization design model for the hoisting container using a joint failure probability and parameter sensitivity as constraints.
Abstract:
A device for enabling autonomous powering of a monitoring node of a scraper conveyor chain includes a bottom baffle, a friction wheel drive device, a limiting device, a generator, an energy storage battery, a cable entry device, and dampers. The bottom baffle is connected to a bottom portion of a scraper of a scraper conveyor. The friction wheel drive device comprises a ball, a friction wheel, a drive shaft connected to the generator, and a shaft coupler. The friction wheel is disposed on the drive shaft, and an outer edge of the friction wheel is in contact with a surface of the ball. The limiting device is a ball housing that is connected to the bottom baffle, and is used for limiting the ball within the ball housing. The energy storage battery is connected to the generator, and is used to store electrical energy generated from the generator. The dampers are disposed on the drive shaft.
Abstract:
A hoist main shaft torque monitoring device based on angle measurement, constituted primarily by a first base, a second base, a light generating unit, a shutter, and a light sensing element; the light source, a first lens, and a first optical aperture arranged in the light generating unit, as well as a second optical aperture, second lens, and light sensing element on the shutter, forming a light source generation, propagation, and reception pathway; when the elevator main shaft is subjected to a certain torque, a corresponding displacement is produced between the first optical aperture and the second optical aperture, thus measuring the change in amount of light ultimately reaching the second optical aperture so as to measure the twist angle of the rotary shaft and finally calculate the magnitude of the shaft torque. Without damaging the original equipment and foundation, the device measures the torque of the shaft at different rotational speeds. The device can measure stationary torque and torque at different rotational speeds of the shaft, without the electromagnetic field interfering with wireless transmission; the device is easy to use, maintenance costs are low, and it is of interest for widespread popularization.
Abstract:
A system and a method for automatically regulating the tensions of the guide ropes of a flexible cable suspension platform. The system includes a guide rope regulator mounted on a flexible cable suspension platform, a hydraulic pump station arranged on the flexible cable suspension platform, and a hydraulic system associated to the hydraulic pump station. The guide rope regulator automatically regulates the tensions of the guide ropes to enable the tensions of all the guide ropes to be consistent, so as to further ensure that the flexible cable suspension platform is in a level condition. The guide rope regulator also can measure the tension states of the guide ropes conveniently so as to ensure that the guide ropes have enough tensions to efficiently limit the swing amplitude of a lilting container. The system is simple and convenient to operate, and has a good automatic regulating effect.
Abstract:
The present invention discloses a device and a method for detecting the tension on a guide rope of a hanging scaffold in a construction shaft. The guide rope is released by a winch, rounds over a hoisting sheave, is connected to the hanging scaffold, and then is tensioned up; the hoisting sheave is disposed at a position above the winch, and the device comprises a slide device, two tension ropes, and a pull rope, wherein, the slide device is fitted around the guide rope, the two tension ropes are fixed to the two sides of the slide device respectively and arranged parallel to the guide rope, the pull rope is fixed to the lower part of the slide device and arranged perpendicular to the guide rope. On the basis of the basic principles of mechanics, the force applied on the guide rope can be calculated indirectly according to the proportional relation between the forces applied on the tension rope and guide rope and the lengths of the ropes. The device disclosed in the present invention is simple, and the method disclosed in the present invention is skillful. The device and method are applicable to thick and thin steel wire ropes and highly universal, and are low in cost.
Abstract:
The disclosure discloses a system for controlling a multi-point synchronous braking of a monorail hoist and a utilization method thereof. The system comprises a contact detection unit, a common end roller unit, a hydraulic unit, a synchronous control unit and connection cables. The contact detection unit is installed on a brake shoe of a monorail hoist. The common end roller unit is installed on a travelling track and connected with a frame of the monorail hoist. The contact detection unit includes a tube in connection with the brake shoe. A metal probe corresponding to the travelling track is arranged inside the tube. A circular boss is formed on the metal probe. A limiting bolt corresponding to the circular boss is formed on an inner side wall of the tube. The metal probe is contactable with the travelling track or the limiting bolt when the brake shoe brakes.