Abstract:
A power fuse includes a housing, first and second conductive terminals extending from the housing, and at least one fatigue resistant fuse element assembly connected between the first and second terminals. The fuse element assembly includes at least a first conductive plate and a second conductive plate respectively connecting the first and second conductive terminals, and a plurality of separately provided wire bonded weak spots interconnecting the first conductive plate and the second conductive plate.
Abstract:
Electrical current sensing and monitoring methods include connecting sensing a voltage across a conductor having a non-linear resistance such as a fuse element. The current flowing in the conductor is calculated based on at least a first detected state of the sensed voltage and a thermal equilibrium characterization of the conductor.
Abstract:
Fuse assemblies in the form of fuse blocks and fuse holders include embedded permanent magnet arc suppression features that facilitate higher voltage operation of fusible circuit protection without increasing the size of the fuse assemblies. The embedded magnets apply an external magnetic field upon an overcurrent protection fuse and produce an arc deflection force to enhance arc quenching capability of the fuse without increasing its form factor.
Abstract:
Power fuses having filler material including hydrated zeolite material facilitates increasing power density of electrical fuses in reduced package sizes. The hydrated zeolite material releases water to cool and suppress electrical arcing conditions experienced in higher power circuitry.
Abstract:
Systems and methods for detecting thermal-mechanical strain fatigue in an electrical fuse include a controller configured to monitor at least one fuse fatigue parameter over a period of time while the fuse is connected to an energized electrical power system, and based on the monitored at least one fuse fatigue parameter, the controller is further configured to determine at least one of a consumed service life of the fuse element or a service life remaining of the fuse element.
Abstract:
Fuse assemblies in the form of fuse blocks and fuse holders include embedded permanent magnet arc suppression features that facilitate higher voltage operation of fusible circuit protection without increasing the size of the fuse assemblies. The embedded magnets apply an external magnetic field upon an overcurrent protection fuse and produce an arc deflection force to enhance arc quenching capability of the fuse without increasing its form factor.
Abstract:
A compact fusible disconnect switch device includes a magnetic arc deflection assembly including at least a pair of magnets disposed about a switch contact assembly. The magnetic arc deflection assembly facilitates reliable connection and disconnection of DC voltage circuitry well above 125 VDC with reduced arcing intensity and duration. Multiple pairs of magnets may apply magnetic fields in directions opposing one another to deflect electrical arcs in different directions at more than one location in the switch contact assembly to facilitate high voltage DC operation.
Abstract:
An embodiment of an in-line fuse holder has been disclosed. The fuse holder includes a first terminal and a second terminal configured to cooperate with the first terminal in retaining a fuse between the first terminal and the second terminal, wherein each of the first and second terminals has a sidewall that defines a fuse-receiving socket, the sidewall having a plurality of apertures circumferentially spaced about the socket.
Abstract:
An embodiment of a fuse module has been disclosed. The fuse module includes a housing and a fuse element assembly contained within the housing. The fuse element assembly includes at least one fuse element unit having a plurality of trigger mechanisms and a perforated strip electrically connected to the trigger mechanisms. Increased ampacity ratings in a more compact arrangement provides for fuse modules having increased current protection capability that, in turn, provides for improved disconnect switching capabilities.
Abstract:
A compact fusible disconnect switch device includes a magnetic arc deflection assembly including at least a pair of magnets disposed about a switch contact assembly. The magnetic arc deflection assembly facilitates reliable connection and disconnection of DC voltage circuitry well above 125 VDC with reduced arcing intensity and duration. Multiple pairs of magnets may apply magnetic fields in directions opposing one another to deflect electrical arcs in different directions at more than one location in the switch contact assembly to facilitate high voltage DC operation.