Abstract:
A fuse element assembly has been disclosed. The fuse element assembly includes a fuse element having a pair of side edges and at least one weak spot between the side edges. The fuse element assembly also includes an arc-quenching material attached locally to the fuse element adjacent the weak spot.
Abstract:
A switch (10), particularly a disconnecting switch (10) for high direct currents and alternating currents at high voltages, can be transferred from a conducting position into a disconnecting position. The switch (10) is includes a housing (12), a first contact (28), a second contact (30), a switching piston (24) guided by the housing (12) with a connecting element (22), which establishes an electrical connection in the connecting position between the first contact (28) and the second contact (30). The housing (12) defines an interior space surrounding the connecting element (22). The connecting element (22) extends at least partially in the interior space (18) and is filled with an insulating medium (20), and the switch is designed such that a mechanical movement of the switching piston (24) transfers the switch (10) from the connecting position into the disconnecting position. The switching piston (24) mechanically impacts the connecting element (22) such that the electrical connection between the first contact (28) and the second contact (30) is interrupted in at least one disconnecting location.
Abstract:
A current-limiting fuse for use at voltages between 23 kilovolts (kV) and 38 kV includes a body including a sidewall that at least partially defines an interior space; a fuse element in the interior space of the body, the fuse element wrapped around a non-conductive core and connected to first and second electrically conductive plates; and a non-bound particulate material in the interior space of the body, the non-bound particulate material including a plurality of pieces of the material with voids between at least some of the pieces. A fuse holder for use at voltages between 23 kV and 38 kV includes a housing for insertion in a sidewall of a transformer. The housing includes an exterior surface that defines an interior region. A fuse assembly is received in the interior region of the housing, the fuse assembly being configured to be replaced without opening the tank of the transformer.
Abstract:
Fuses having a melamine-coated-steatite foam filler are described. In particular, melamine-coated-steatite foam filler for use in a fuse comprising steatite coated in a melamine compound (e.g., plasticized melamine resin) and then heated to form crystalline foam filler are described. The foam filler may comprise steatite of substantially 3 times the melamine compound by weight and may be heated and then cooled to form the foam filler.
Abstract:
The fusible cut-out link, e.g., for semiconductor fuses, may have a ceramic body filled with compacted sand. The ceramic body may have a volume reservoir embodied such that an increase in internal pressure in the ceramic body due to thermal expansion of the compacted sand causes the volume reservoir to release an additional volume in the ceramic body, thereby allowing the compacted sand to expand. In this manner, it may be possible to avoid or limit damage to the ceramic body due to stress fractures caused by the different rates of thermal expansion of the compacted sand and of the ceramic body as a result of an increase in temperature and the increase in internal pressure in the ceramic body associated therewith. The robustness of the fusible cut-out link may be significantly improved as a result.
Abstract:
A fusible cut-out link, e.g., for semiconductor fuses, may have a ceramic body filled with compacted sand, wherein a supplementary body is introduced into the compacted sand. Said supplementary body may be embodied in such a way that an increase in internal pressure in the ceramic body due to thermal expansion of the compacted sand causes the supplemental body to release an additional volume into which the compacted sand is allowed to expand. In this manner, it may be possible to avoid or limit damage to the ceramic body due to stress fractures caused by the different rates of thermal expansion of the compacted sand and of the ceramic body as a result of an increase in temperature and the increase in internal pressure in the ceramic body associated therewith. The robustness of the fusible cut-out link may be significantly improved as a result.
Abstract:
A power semiconductor module having at least one fuse. The power semiconductor module comprises a housing, load terminal elements that lead outside of the housing, and a substrate disposed inside the housing with a plurality of metal connecting tracks of different polarity electrically insulated from one another. On at least one of these connecting tracks, at least one power semiconductor component is disposed and is connected correctly in terms of circuitry to first connecting elements that have a first line cross section. The fuse comprises a second connecting element that has a second line cross section, less than the first, and is disposed between two connecting tracks and/or between a connecting track and a load terminal element. The second connecting element is sheathed in one portion by an explosion protection means.
Abstract:
A fuse for a high voltage/high current application, such as a hydro-electric vehicle (“HEV”) application is provided. The fuse employs a variety of arc quenching features to handle a large amount of arcing energy that is generated when such fuse is opened due to a fuse opening event. In one embodiment, an insulative substrate, such as a melamine substrate, is metallized with a fuse element. The fuse element extends to multiple surfaces of the substrate. A fuse opening portion of the element is located so that the arcing energy is forced to travel along multiple insulative planes, increasing an impedance across the opening of the element and decreasing the likelihood of a sustained arc. Also, the substrate and element are disposed in a sealed housing, which is packed in one embodiment with an arc quenching material, such as sand.
Abstract:
The disclosed medium voltage range, current limiting, backup fuse, comprises a housing filled with an arc-extinguishing media in a tubular housing of fiber resin or ceramic with conductive terminals at both ends. The high fault current spirally wound sheathed fusible elements of copper or silver are electrically connected to the end terminals and are wrapped on a mica or ceramic support. The elements can be single or multiple parallel wound for low to high nominal currents. The sheathed electrical element is of a series of homogeneous holes and notches distributed throughout to effectively cause the high-current 12t energy to be equally absorbed throughout the length of the element.
Abstract:
A fuse includes a tube, a pair of blade terminals projecting from opposite ends of the tube, at least one fuse element disposed in the tube and electrically coupled between the terminals, and a pair of metallic end caps disposed on opposite ends of the tube. Electrically insulative elements are disposed between the end caps and the terminals. The tube is filled with an arc-quenching material inserted through a fill hole that is plugged by a plastic drive rivet. Each terminal is attached to a metallic end plate by means of a staking tang inserted into a slot of the end plate, and by means of a separate solder joint. Each insulative element includes an axial sleeve through which a respective terminal extends for a part of its length. The fuse element comprises a one-piece metal element bent to form a pair of parallel, superimposed strips divided into sections by means of fusible weak points. The metal element also includes bridge elements which join sections of one strip to respective sections of the other strip, the bridges themselves being non-interconnected. End-most sections of one strip are fixedly joined to respective end-most sections of the other strip to define tabs for electrically connecting the fuse element to a circuit.