Abstract:
A coating composition including a reinforcing agent. The coating composition may include one or more radiation-curable monofunctional monomers, one or more radiation-curable multifunctional monomers or oligomers, a photoinitiator, and a reinforcing agent. The monofunctional monomers, multifunctional monomers, and multifunctional oligomers may include acrylate groups. The reinforcing agent may be an acrylic co-polymer that includes two or more repeat units. At least one of the repeat units includes chemical groups that enable self-association of the acrylic co-polymer. Self-association of the acrylic co-polymer may improve the tensile strength of coatings formed from the coating compositions.
Abstract:
An optical fiber coating composition is provided. The optical fiber coating composition includes a radiation-curable component, a photoinitiator, and an acrylic polymer having at least one benzophenone group.
Abstract:
Articles utilizing polymeric dielectric materials for gate dielectrics and insulator materials are provided along with methods for making the articles. The articles are useful in electronics-based devices that utilize organic thin film transistors.
Abstract:
Articles utilizing polymeric dielectric materials for gate dielectrics and insulator materials are provided along with methods for making the articles. The articles are useful in electronics-based devices that utilize organic thin film transistors.
Abstract:
An optical fiber coating composition is provided. The optical fiber coating composition includes a radiation-curable component, a photoinitiator, and an acrylic polymer having at least one benzophenone group.
Abstract:
An optical fiber coating composition that includes an acrylic copolymer. The acrylic copolymer is a block copolymer that includes two or more acrylic blocks. The two or more acrylic blocks differ in glass transition temperature (Tg). The acrylic copolymer may include an acrylic block with a Tg above 50° C. and an acrylic block with a Tg below 0° C. Representative monomers from which the repeat units of the acrylic blocks are derived include alkyl(meth)acrylates. In one embodiment, the acrylic copolymer includes an acrylic block with repeat units derived from methylmethacrylate and an acrylic block derived from butylacrylate. The acrylic copolymer lacks urethane groups, lacks urea groups, lacks radiation-curable groups, and is otherwise unreactive with other components in the coating composition. The acrylic copolymer features high solubility in common acrylate-based radiation-curable coating compositions and can be provided at high concentrations in acrylate-based coating compositions.
Abstract:
A radiation curable composition is disclosed that includes a curable cross-linker essentially free of urethane and urea functional groups, a curable diluent, and a non-radiation curable component comprising (thio)urethane and/or urea groups. Coated optical fibers having a primary coating formed from this radiation curable composition, as well as optical fiber ribbons that contain the coated optical fibers are disclosed. Methods of making the optical fibers and ribbons are also disclosed.
Abstract:
A method of synthesizing urethane-free polyfunctional acrylate compounds. The method includes reaction of a polyol with acrylic acid in the presence of an inhibitor. A catalyst may also be present. The catalyst may be an acid and the inhibitor may be a substituted phenol compound. Excess acid may be removed by adding a salt and excess water may be removed by adding a drying agent. The reaction converts alcohol groups of the polyol to acrylate groups to provide a radiation-curable polyfunctional acrylate compound. The reaction is applicable to polyols generally and provides a scalable high yield process for forming urethane-free polyfunctional acrylates over a wide range of molecular weights. Coatings made from the acrylate products exhibit modulus and tensile strength characteristics favorable for primary fiber coatings.
Abstract:
A coating composition including a reinforcing agent. The coating composition may include one or more radiation-curable monofunctional monomers, one or more radiation-curable multifunctional monomers or oligomers, a photoinitiator, and a reinforcing agent. The monofunctional monomers, multifunctional monomers, and multifunctional oligomers may include acrylate groups. The reinforcing agent may be an acrylic co-polymer that includes two or more repeat units. At least one of the repeat units includes chemical groups that enable self-association of the acrylic co-polymer. Self-association of the acrylic co-polymer may improve the tensile strength of coatings formed from the coating compositions.
Abstract:
An optical fiber is disclosed that includes a primary coating formed from a radiation curable composition that includes a curable cross-linker essentially free of urethane and urea functional groups, a curable diluent, and a non-radiation curable component comprising (thio)urethane and/or (thio)urea groups. The primary coating features low Young's modulus, low Tg, and high tensile strength. The optical fiber exhibits low microbend losses in wire mesh drum and basketweave tests.