Abstract:
A porous ceramic honeycomb body (10) including intersecting walls that form channels (22) extending axially from a first end face to a second end face and layered plugs (62) comprised of a first layer (64) disposed on channel walls and a second layer (66) disposed inward toward an axial center of each respective channel on the first layer. The plugs seal at least one of a first portion of the channels at the first end face and a second portion of channels at the second end face of the porous ceramic honeycomb body.
Abstract:
An apparatus and method of manufacturing a porous ceramic segmented honeycomb body (340,340′) comprising axial channels (216) extending from a first end face (220) to a second end face (224). A plurality of porous ceramic honeycomb segments (204) is moved axially past respective apertures (110) of an adhesive applying device (100). Adhesive (118) is applied through openings (126) in the adhesive applying device (100) onto peripheral axial surfaces of each porous ceramic honeycomb segment (204). The plurality of porous ceramic honeycomb segments (204) enters a wide opening (318) of a tapered chamber (314) and exits a narrow opening (322) of the tapered chamber (314); a tapered wall (326) from the wide opening (318) to the narrow opening (322) presses the plurality of porous ceramic honeycomb segments (204) together forming the porous ceramic segmented honeycomb body (340,340′). The adhesive (118) on the peripheral axial surfaces between respective porous ceramic honeycomb segments (204) is distributed by the pressing.
Abstract:
Various embodiments are directed to ceramic articles. The ceramic articles include a fired ceramic honeycomb body having a plurality of cell channels and at least one plug disposed in at least one cell channel of the fired ceramic honeycomb body. The at least one plug includes a refractory filler, an inorganic binder, and an organic binder. The refractory filler comprises particles having a d50 in the range from about 10 μm to about 40 μm, and a d90 less than about 110 μm.
Abstract:
A porous ceramic honeycomb body (10) including intersecting walls that form channels (22) extending axially from a first end face to a second end face and layered plugs (62) comprised of a first layer (64) disposed on channel walls and a second layer (66) disposed inward toward an axial center of each respective channel on the first layer. The plugs seal at least one of a first portion of the channels at the first end face and a second portion of channels at the second end face of the porous ceramic honeycomb body.
Abstract:
A pass-through catalytic substrate can comprise a plurality of porous ceramic substrate walls defining flow channels extending between an inlet end and an outlet end of the catalytic substrate. The pass-through catalytic substrate can include a plurality of porous ceramic beveled corner portions positioned at intersecting corners of the substrate walls within the flow channels. In one example, the porous ceramic beveled corner portions each include a heat capacity less than about 1.38 J/cm3/K. In another example, a catalytic washcoat layer can be provided for coating the porous ceramic substrate walls and the porous ceramic beveled corner portions. Methods for producing a pass-through catalytic substrate also provide porous ceramic beveled corner portions.
Abstract:
A method of plugging a permeable porous cellular body comprises: contacting the permeable porous cellular body with a plugging mixture, the permeable porous cellular body defining a plurality of channels; forcing the plugging mixture into the plurality of channels until a maximum, self-limiting, depth of plugging mixture is disposed within the plurality of channels; and maintaining a constant flow rate of the plugging mixture into the plurality of channels until a pressure on the plugging mixture elevates to a predetermined pressure. Alternatively, the method comprises forcing the plugging mixture into the plurality of channels utilizing the application of a constant pressure over time until a maximum, self-limiting, depth of the plugging mixture is disposed within the plurality of channels; and maintaining the constant pressure applied to the plugging mixture until flow of the plugging mixture into the channels decays from an initial flow rate to a predetermined flow rate.
Abstract:
A method of plugging a permeable porous cellular body (14) comprises: contacting the permeable porous cellular body (14) with a plugging mixture (100), the permeable porous cellular body (14) defining a plurality of channels (26); forcing the plugging mixture (100) into the plurality of channels (26) until a maximum, self-limiting, depth (114) of plugging mixture (100) is disposed within the plurality of channels (26); and maintaining a constant flow rate of the plugging mixture (100) into the plurality of channels until (26) a pressure on the plugging mixture (100) elevates to a predetermined pressure. Alternatively, the method comprises forcing the plugging mixture (100) into the plurality of channels (26) utilizing the application of a constant pressure over time until a maximum, self-limiting, depth (114) of the plugging mixture (100) is disposed within the plurality of channels (26); and maintaining the constant pressure applied to the plugging mixture (100) until flow of the plugging mixture (100) into the channels (26) decays from an initial flow rate to a predetermined flow rate.
Abstract:
An extrusion die (16) including a plurality of pins (38) having side surfaces defining an intersecting array of slots (30) extending axially into the die (16) from a discharge face (34) of the die (16). A plurality of feedholes (28) extend axially from an inlet face (32) of the die (16) opposite to the discharge face (34). The feedholes (28) connect with the slots (30) at intersections (35) within the die (16) to create a flow path from the inlet face (32) to the discharge face (34). A first coating (42) is on at least a portion of the feedholes (28) in a first zone (46) extending over a first axial length of the flow path. A second coating (44) that is different than the first coating (42) is on at least a portion of the side surfaces (37) of the pins (38) in a second zone (48) extending over a second axial length of the flow path. Methods of fabricating an extrusion die (16) and manufacturing a ceramic article (100), such as a honeycomb body, are also disclosed.
Abstract:
Disclosed is a honeycomb support structure comprising a honeycomb body and an outer layer or skin formed of a cement that includes an inorganic filler material having a first coefficient of thermal expansion from 25 C to 600 C and a crystalline inorganic fibrous material having a second coefficient of thermal expansion from 25 C to 600 C. Skin cement composition controls level of cement liquid/colloid components, for example water, colloidal silica, and methylcellulose migration into the substrate during the skin application process to form barrier to skin wetting and staining during the washcoating process.
Abstract:
An apparatus and method of manufacturing a porous ceramic segmented honeycomb body (340,340′) comprising axial channels (216) extending from a first end face (220) to a second end face (224). A plurality of porous ceramic honeycomb segments (204) is moved axially past respective apertures (110) of an adhesive applying device (100). Adhesive (118) is applied through openings (126) in the adhesive applying device (100) onto peripheral axial surfaces of each porous ceramic honeycomb segment (204). The plurality of porous ceramic honeycomb segments (204) enters a wide opening (318) of a tapered chamber (314) and exits a narrow opening (322) of the tapered chamber (314); a tapered wall (326) from the wide opening (318) to the narrow opening (322) presses the plurality of porous ceramic honeycomb segments (204) together forming the porous ceramic segmented honeycomb body (340,340′). The adhesive (118) on the peripheral axial surfaces between respective porous ceramic honeycomb segments (204) is distributed by the pressing.