Abstract:
An embodiment of the present invention includes a transceiver for use in a multi-input-multi-output (MIMO) Orthogonal Frequency Domain Multiplexing (OFDM) wireless communication system. The transceiver decodes and remodulates certain signal fields and uses the same to update the coefficients of a frequency equalizer thereby improving channel estimation and extending training.
Abstract:
A modem system for receiving and transmitting signals having a frequency domain equalizer (FEQ) block being responsive to a frequency channel response for processing the same to generate one or more equalizer coefficients, the modem system is responsive to an input signal for processing the same to generate frequency channel response, the input signal being generated from transmission of a transmitted signal, FEQ block for using equalizer coefficients to generate an equalized channel response, modem system for using equalized channel response to generate one or more metric weights, in accordance with an embodiment of the present invention.
Abstract:
A method for identifying source BSS in WLAN is proposed. A high efficiency (HE) access point (AP) sends a packet containing a basic service set (BSS) color to a HE station. The HE AP also sends a packet containing an assigned association identification (AID) to a very high throughput (VHT) station. The assigned AID comprises at least part of the BSS color information. The VHT station therefore sends a packet containing the at least part of the BSS color information such that any AP or station that receives the packet can determine the BSS the VHT station is in.
Abstract:
A method of sub-channel feedback in OFDMA systems is provided. A wireless receiving device (STA) receives a radio signal from a transmitting device (AP) over a wide channel in an OFDMA system. The radio signal is transmitted over multiple sub-channels of the wide channel. The STA estimates channel quality information based on the received radio signal for each sub-channel. The STA then sends feedback information to the transmitting device. The feedback information comprises the estimated channel quality information for a selected subset of sub-channels from the wide channel based on a predefined rule. In one embodiment, the feedback information is embedded within an ACK/BA frame or is carried in a frame immediately subsequent to the ACK/BA frame.
Abstract:
A modem system for receiving and transmitting signals having a frequency domain equalizer (FEQ) block being responsive to a frequency channel response for processing the same to generate one or more initial FEQ coefficients (FEQ1), the modem system is responsive to an input signal for processing the same to generate frequency channel response, the input signal being generated from a transmitted signal, FEQ block using FEQ1 to generate an equalized Signal, modem system demodulating equalized Signal to generate a demodulated Signal symbol, in accordance with an embodiment of the present invention.
Abstract:
A modem receiver for receiving signals having a frequency domain equalizer training module (FTM) being responsive to a frequency channel response for processing the same to generate one or more frequency domain equalizer (FEQ) coefficients, said modem receiver being responsive to an input signal for processing the same to generate said frequency channel response, said input signal being generated from transmission of a transmitted signal, said frequency channel response for including one or more pilot tones, said FEQ coefficients for including one or more pilot tone FEQ coefficients, in accordance with an embodiment of the present invention. The modem receiver further includes an offset weight determination (OWD) module being responsive to said pilot tone FEQ coefficients for processing the same to generate one or more carrier weights, said modem receiver for using said carrier weights to generate a carrier offset, said OWD module for using said pilot tone FEQ coefficients to generate one or more timing weights, said modem receiver for using said timing weights to generate a timing offset, said modem receiver for reducing the effects of faded pilot tones on determination of said timing offset and said carrier offset between said transmitted signal and said input signal.
Abstract:
A first embodiment is a method of calibrating an implicit beamforming wireless system wherein the implicit wireless system comprises a beamformer and a beamformee. The method comprises associating the beamformer with the beamformee, sending a sounding packet from the beamformer to the beamformee, receiving a sounding response at the beamformer wherein the sounding response contains explicit channel state information as estimated by beamformee, computing implicit channel state information at the beamformer based on transmissions from the beamformee, passing explicit and implicit channel state information into the beamformer, computing a set of compensation parameters and loading the set of compensation parameters into the beamformer thereby enabling the beamformer to implicitly beamform to a device that does not support explicit beamforming.
Abstract:
The present invention relates generally to wireless transceivers, and more particularly but not exclusively to non 802.11 detection and avoidance methodologies for wireless devices including transceivers. In one or more implementations, a method for detecting non 802.11 operating in the unlicensed 5.25-5.35 and 5.47-10.725 GHz radio bands, using wireless devices, such as AP, are provided. An AP is used to automatically detect the presence of non 802.11 on all channels in these bands, alert all of its clients, and move to another channel that is known to be devoid of non 802.11 using one or more implementations.
Abstract:
Varying embodiments of the present invention describe a closed loop system for processing the beamforming information, qualifying the expected performance, activating and deactivating the beamforming system. A first embodiment is a method for closed loop beamforming in a wireless communication system, the system comprising a transmitter and a receiver, the method comprising initiating beamforming on a communication channel between the transmitter and the receiver, monitoring the communication channel, periodically determining a condition of the communication channel and controlling beamforming based on the condition of the communication channel.