Abstract:
A method of direction finding (DF) positioning in a wireless location area network (WLAN) is proposed. A multiple antenna IEEE 802.11 transmitting device can transmit signal preamble containing multiple Long Training Field (LTF) symbols in a radio frame from multiple antennas simultaneously, which allows a receiving device to resolve multiple DF sounding signals transmitted from the multiple antennas. As a result, angle of departure (AoD) of the transmitting device can be estimated by using the multiple resolved DF sounding signals from each antenna for DF positioning purpose.
Abstract:
A multi input multi output (MIMO) receiver for receiving signals having a plurality of equalizers being responsive to aligned signals for processing the same to generate a plurality of equalized outputs using filter coefficients, in accordance with an embodiment of the present invention. The MIMO receiver for training said plurality of equalizers to adapt said filter coefficients for generating said plurality of equalized outputs, said MIMO receiver for combining said plurality of equalized outputs in time domain to generate a weighted output, said MIMO receiver for improving the quality of said weighted output by performing equalization prior to combining said plurality of equalized outputs.
Abstract:
An embodiment of the present invention includes a calibration system employed in a multi-input-multi-output (MIMO) system for beamforming and receiving a plurality of streams. The system includes a first calibration circuit responsive to inphase (I) and quadrature (Q) pairs of stream and operative to calibrate each I and Q pair and a second calibration circuit responsive to the calibrated I and Q pairs for all streams, wherein the first and second calibration circuits perform calibration in the time domain.
Abstract:
A method and system of communicating packets and detecting packets are disclosed. In a first aspect, the method and system comprise enabling the detection of a very high throughput (VHT) signal field. The VHT signal field is distinguishable from other signal fields, wherein the VHT signal field allows for a backward compatibility with other devices. In a second aspect, the method and system comprise initializing the device to be in receive mode and receiving at least one signal field symbol and detecting the presence of additional signal field symbols. The method and system further include distinguishing a very high throughput (VHT) signal field from other signal field symbols and decoding the VHT signal field parameters uniquely describing the VHT packet format.
Abstract:
A multi input multi output (MIMO) transceiver having a channel estimation module being responsive to received samples including channel state information (CSI) and operative to generate time domain beamforming parameters, in accordance with an embodiment of the present invention. The multi input multi output (MIMO) transceiver further includes an adaptive beamforming parameters module coupled to receive said time domain beamforming parameters and operative to generate time domain adaptive beamforming parameters, said adaptive beamforming parameters module operative to process said time domain beamforming parameters to generate frequency domain adaptive beamforming parameters, a decoding module coupled to receive said frequency domain adaptive beamforming parameters and operative to generate data bits, a channel parameters module coupled to receive said data bits and operative to extract said time domain adaptive beamforming parameters, an encoding module coupled to receive said time domain adaptive beamforming parameters and operative to generate a data packet, said encoding module operative to encode said data packet to generate a modulated data stream, and a beamform matrices module coupled to receive said modulated data stream and operative to generate a beamformed data stream based on said frequency domain adaptive beamforming parameters, said MIMO transceiver operative to process said beamformed data stream to generate output signals and to transmit said output signals by forming beam patterns.
Abstract:
An embodiment of the present invention includes a transceiver for use in a multi-input-multi-output (MIMO) Orthogonal Frequency Domain Multiplexing (OFDM) wireless communication system. The transceiver decodes and remodulates certain signal fields and uses the same to update the coefficients of a frequency equalizer thereby improving channel estimation and extending training.
Abstract:
A modem system for receiving and transmitting signals having a frequency domain equalizer (FEQ) block being responsive to a frequency channel response for processing the same to generate one or more equalizer coefficients, the modem system is responsive to an input signal for processing the same to generate frequency channel response, the input signal being generated from transmission of a transmitted signal, FEQ block for using equalizer coefficients to generate an equalized channel response, modem system for using equalized channel response to generate one or more metric weights, in accordance with an embodiment of the present invention.
Abstract:
A method for identifying source BSS in WLAN is proposed. A high efficiency (HE) access point (AP) sends a packet containing a basic service set (BSS) color to a HE station. The HE AP also sends a packet containing an assigned association identification (AID) to a very high throughput (VHT) station. The assigned AID comprises at least part of the BSS color information. The VHT station therefore sends a packet containing the at least part of the BSS color information such that any AP or station that receives the packet can determine the BSS the VHT station is in.
Abstract:
A method of sub-channel feedback in OFDMA systems is provided. A wireless receiving device (STA) receives a radio signal from a transmitting device (AP) over a wide channel in an OFDMA system. The radio signal is transmitted over multiple sub-channels of the wide channel. The STA estimates channel quality information based on the received radio signal for each sub-channel. The STA then sends feedback information to the transmitting device. The feedback information comprises the estimated channel quality information for a selected subset of sub-channels from the wide channel based on a predefined rule. In one embodiment, the feedback information is embedded within an ACK/BA frame or is carried in a frame immediately subsequent to the ACK/BA frame.
Abstract:
An embodiment of the present invention includes a calibration system employed in a multi-input-multi-output (MIMO) system for beamforming and receiving a plurality of streams. The system includes a first calibration circuit responsive to inphase (I) and quadrature (Q) pairs of stream and operative to calibrate each I and Q pair and a second calibration circuit responsive to the calibrated I and Q pairs for all streams, wherein the first and second calibration circuits perform calibration in the time domain.