Abstract:
According to certain aspects, a system includes a client device that includes a virtual machine (VM) executed by a hypervisor, a driver located within the hypervisor, and a data agent. The VM may include a virtual hard disk file and a change block bitmap file. The driver may intercept a first write operation generated by the VM to store data in a first sector, determine an identity of the first sector based on the intercepted write operation, determine an entry in the change block bitmap file that corresponds with the first sector, and modify the entry in the change block bitmap file to indicate that data in the first sector has changed. The data agent may generate an incremental backup of the VM based on the change block bitmap file in response to an instruction from a storage manager, where the incremental backup includes the data in the first sector.
Abstract:
The data storage system according to certain aspects can manage the archiving of virtual machines to (and restoring of virtual machines from) secondary storage. The system can determine whether to archive virtual machines based on usage data or information. The usage information may include storage usage, CPU usage, memory usage, network usage, events defined by a virtual machine software or application, etc. The system may archive virtual machines that are determined to have a low level of utilization. For example, a virtual machine can be archived when its usage level falls below a threshold level. The system may create a virtual machine placeholder for an archived virtual machine, which may be a “light” or minimal version of the virtual machine that acts as if it is the actual virtual machine. By using a virtual machine placeholder, a virtual machine may appear to be active and selectable by the user.
Abstract:
The disclosed systems and methods enable a virtual machine, including any applications executing thereon, to quickly start executing and servicing users based on pre-staged data blocks supplied from a backup copy in secondary storage. Substantially concurrently with the ongoing execution of the virtual machine, a virtual-machine-file-relocation operation may move data blocks originating in the backup copy to a primary storage destination that becomes the virtual machine's primary data store after the relocation operation completes. An enhanced data agent, operating in conjunction with an enhanced media agent in a storage management system, coordinates restoring of the virtual machine and the launch of the relocation operation. The enhanced media agent may pre-stage certain backed up data blocks which may be needed to launch the virtual machine, based on predictive analysis pertaining to the virtual machine's operational profile. The enhanced media agent may also pre-stage backed up data blocks for the relocation operation, based on the operation's relocation scheme. Servicing read requests to the virtual machine may take priority over ongoing pre-staging of backed up data. Read requests may be tracked so that the media agent may properly maintain the contents of an associated read cache. Some embodiments of the illustrative storage management system may lack, or may simply not require, the relocation operation, and may operate in a “live mount” configuration.
Abstract:
A file manager application that integrates with virtualization substantially enables end-user control and storage management of virtual machines (VMs). The file manager application, which may operate as a plug-in for a legacy file manager executing on a user's client computing device, may comprise: displaying the VMs associated with the user, including their respective properties; enabling viewing/browsing of information about storage management operations for a VM such as backups and/or archiving, including files associated with the VM and searching and filtering criteria; control features that enable the user to control existing VMs, such as shut down, restart/activate/power-on, suspend, and/or re-configure, and also perform storage management of a VM and/or its associated files, such as create snapshot, back up, archive, restore VM from secondary storage, restore and overwrite VM, restore file(s)/folder(s) to user's client computing device, restore file(s)/folder(s) to a production VM in primary storage, etc.; control features that enable the user to provision additional VMs, such as create a new VM, create a clone VM, configure a VM, etc.
Abstract:
Snapshot-based disaster recovery (DR) orchestration systems and methods for virtual machine (VM) failover and failback do not require that VMs or their corresponding datastores be actively operating at the DR site before a DR orchestration job is initiated, i.e., before failover. An illustrative data storage management system deploys proprietary components at source data center(s) and at DR site(s). The proprietary components (e.g., storage manager, data agents, media agents, backup nodes, etc.) interoperate with each other and with the source and DR components to ensure that VMs will successfully failover and/or failback. DR orchestration jobs are suitable for testing VM failover scenarios (“clone testing”), for conducting planned VM failovers, and for unplanned VM failovers. DR orchestration jobs also handle failback and integration of DR-generated data into the failback site, including restoring VMs that never failed over to fully re-populate the source/failback site.
Abstract:
A data storage environment can include one or more virtual machines instantiated on a host computing device. Based on physical location data of the one or more virtual machines received from the host computing device, a storage manager can control the performance of a secondary copy operation on one or more storage units that store virtual machine data associated with the one or more virtual machines and/or the performance of a secondary copy operation on the one or more virtual machines.
Abstract:
An improved information management system is described herein that provides on-demand or live mount access to virtual machine data in a secondary copy format. For example, instead of restoring all of the virtual machine data in the secondary copy format to a virtual disk that is then mounted to a virtual machine, the improved information management system can, in response to request to access virtual machine data in a secondary copy format, create a virtual disk having a universal network component (UNC) path and create a virtual machine configured to access data via the UNC path. Once created and booted, the administrator or user can attempt to access the desired virtual machine data via the virtual machine.
Abstract:
An executable utility is injected into cloud-based virtual machines (VMs) that are subject to backups by a data storage management system tasked with protecting the cloud-based VMs and their associated data. The utility is injected into a target VM which is “live” and operating. The utility analyzes the VM's live volume to discover data extents therein, and for each extent computes a respective checksum and determines whether the extent is a “hole.” Afterwards, checksums help identify changed data in successive snapshots of the live volume, so that only changed data will be read and backed up in incremental backups. Time is saved in performing the backup operation first by pre-warming the backup's source volume in parallel with the utility analyzing the live volume, and second by skipping read operations for extents unchanged since a preceding backup. The resulting incremental backup operation is sped up as compared to prior art approaches.
Abstract:
Uploads of restored virtual machine (“VM”) data to cloud storage, e.g., VM restore-to-cloud operations, are performed without having to write whole restored virtual disk files to a proxy server before the virtual disk data begins uploading to cloud. Restored data blocks from a backup source are locally cached, staged for efficiency, and asynchronously uploaded to the cloud page-by-page without tapping mass storage resources on the proxy. Downloads of VM data from cloud storage, e.g., VM backup-from-cloud, are performed without having to download a virtual disk file in its entirety to the proxy server before the backup operation begins generating a backup copy. This speeds up “pulling” VM data from the cloud by pre-fetching and locally caching downloaded data blocks. The cached data blocks are processed for backup and stored page-by-page directly into a secondary copy of the cloud VM virtual-disk file without tapping mass storage resource at the proxy.
Abstract:
An illustrative “VM heartbeat monitoring network” of heartbeat monitor nodes monitors target VMs in a data storage management system. Accordingly, target VMs are distributed and re-distributed among illustrative worker monitor nodes according to preferences in an illustrative VM distribution logic. Worker heartbeat monitor nodes use an illustrative ping monitoring logic to transmit special-purpose heartbeat packets to respective target VMs and to track ping responses. If a target VM is ultimately confirmed failed by its worker monitor node, an illustrative master monitor node triggers an enhanced storage manager to initiate failover for the failed VM. The enhanced storage manager communicates with the heartbeat monitor nodes and also manages VM failovers and other storage management operations in the system. Special features for cloud-to-cloud failover scenarios enable a VM in a first region of a public cloud to fail over to a second region.