Abstract:
A driving assistance device for a vehicle includes: an assistance processing portion that executes a notification of a possibility of a host vehicle intersecting with an other vehicle based on host vehicle information including information that provides an estimation of a travelling course of the host vehicle and an other vehicle information including information that provides an estimation of a travelling course of the other vehicle and acquired by wireless communication; and a map acquisition portion that acquires map data including data that specifies a circular intersection. The host vehicle information includes a position of the host vehicle. The assistance processing portion prevents the notification based on the circular intersection, which is disposed in front of the host vehicle in the travelling course of the host vehicle, according to at least the host vehicle information and the map data acquired by the map acquisition portion.
Abstract:
An in-vehicle apparatus installed in a first vehicle. The in-vehicle apparatus includes a first distance sensor measuring a distance to an object based on time to receive a reflection wave of an electro-magnetic transmission wave from the object after a transmission of the electro-magnetic transmission wave, with the first distance sensor being an electro-magnetic wave sensor. The in-vehicle apparatus also includes an inclination angle sensor that senses a first vehicle inclination angle representative of an inclination angle of the first vehicle that includes the first distance sensor, a radio communicator that receives a second vehicle inclination angle transmitted from a second vehicle that leads the first vehicle, an angle difference calculator that calculates an angle difference between the first vehicle inclination angle and the second vehicle inclination angle, and a processor that performs a preset operation based on the distance measured by the first distance sensor.
Abstract:
A communication system including a first communication apparatus and a second communication apparatus is provided. The first communication apparatus includes a communication portion. The second communication apparatus includes a communication portion. The first communication apparatus includes a first transmission portion. The first transmission portion transmits a first signal to another communication apparatus. The first signal at least includes information enabling to specify the first communication apparatus. The second communication apparatus includes a second transmission portion. The second transmission portion transmits a second signal to the first communication apparatus. The first communication apparatus includes a malfunction determination portion. The malfunction determination portion determines whether the communication portion of the first communication apparatus is out of order. The communication system includes a congestion determination portion. At least one of the first signal and the second signal is transmitted.
Abstract:
A parking space recognition apparatus includes an onboard camera, a wireless receiver, and a parking space determination portion. The onboard camera is mounted to a first vehicle and captures a peripheral image around the first vehicle. The wireless receiver is mounted to the first vehicle and receives a parking-space related information that is transmitted from an outside of the first vehicle. The parking space determination portion is mounted to the first vehicle and determines a parking space to park the first vehicle on a basis of the peripheral image and the parking-space related information.
Abstract:
A driving assistance apparatus in a subject vehicle includes a driving assistance section. A subject-vehicle estimated trajectory is estimated as a subsequent traveling trajectory from a current position and a traveling orientation of the subject vehicle. A neighboring-vehicle estimated trajectory is estimated as a subsequent traveling trajectory of a neighboring vehicle by acquiring trajectory estimation information. A determination area is designated to include a crossing point included in the subject-vehicle estimated trajectory and the neighboring-vehicle estimated trajectory. It is determined whether the determination area includes an intersection node in road map information. A first driving assistance level is used when the determination area does not include the intersection node; the first driving assistance level is smaller in driving assistance than a second driving assistance level used when the determination area includes the intersection node.
Abstract:
A vehicle-mounted device includes an interference determination unit and a sensor control unit. The interference determination unit determines whether an interference state where a first electromagnetic wave ranging sensor equipped to a first vehicle may receive a second transmission wave transmitted from a second electromagnetic wave sensor equipped to a second vehicle is present, based on transmission time frame information received by a first wireless communication device equipped to the first vehicle, and reception duration information indicating a reception duration during which a first electromagnetic wave ranging sensor equipped to the first vehicle may receive a first reflected wave. The sensor control unit controls transmission timing for transmitting the first transmission wave from the first electromagnetic wave ranging sensor and a reception duration, and changes the transmission timing and the reception duration to avoid the interference state, when the interference determination unit determines that the interference state is present.
Abstract:
A vehicle-to-vehicle communication device mounted to a subject vehicle with a traveling control device is provided. The vehicle-to-vehicle communication device includes a communication portion, a connection transmission process portion, a connection control signal obtain portion, a connection signal obtain portion, and a connection control signal transmission process portion. The communication portion receives and transmits a signal between the subject vehicle and a preceding vehicle, and between the subject vehicle and a follower vehicle. The connection transmission process portion transmits a connection request signal. The connection control signal obtain portion obtains a connection control signal. A convoy travel control device includes the vehicle-to-vehicle communication device and the traveling control device. The traveling control device periodically outputs a first instruction and a second instruction to the vehicle-to-vehicle communication device.
Abstract:
A behavior acquisition unit acquires behavior related information about a leading vehicle, which travels at a position closest to the self vehicle on an advancing route of the self vehicle. A front vehicle recognition determination unit determines, as a front vehicle recognition state, whether a leading vehicle is specified and whether a self vehicle travels immediately after the leading vehicle, according to the acquired behavior related information. A sending control unit is configured to cause transmission of the front vehicle recognition state and specifying information, which specifies the self vehicle and the leading vehicle, to surroundings of the self vehicle.
Abstract:
A behavior acquisition unit acquires behavior related information about a leading vehicle, which travels at a position closest to the self vehicle on an advancing route of the self vehicle. A front vehicle recognition determination unit determines, as a front vehicle recognition state, whether a leading vehicle is specified and whether a self vehicle travels immediately after the leading vehicle, according to the acquired behavior related information. A sending control unit is configured to cause transmission of the front vehicle recognition state and specifying information, which specifies the self vehicle and the leading vehicle, to surroundings of the self vehicle.