Abstract:
An exhaust treatment device for treating exhaust includes a main body defining an interior, an inlet, and an outlet; an inlet arrangement disposed at the inlet; an aftertreatment substrate disposed between the inlet and the outlet; a restrictor arrangement disposed between a first closed end of the main body interior and the aftertreatment substrate; and a dosing arrangement configured to inject reactant into the exhaust. The restrictor arrangement defines a restricted passageway that extends towards the first closed end so that exhaust entering the main body interior from the inlet is swirled around the restricted passageway before entering the restricted passageway and passing to a second chamber prior to the aftertreatment substrate.
Abstract:
A method for causing exhaust gas flow to flow at least 270 degrees in a first direction about a perforated tube using a baffle plate having a main body with a plurality of flow-through openings and a plurality of louvers positioned adjacent to the flow-through openings. The method includes deflecting a first portion of the exhaust gas flow with the main body of the baffle plate. The method also includes allowing a second portion of the exhaust gas flow to flow through the flow-through openings of the baffle plate. The method also deflects the second portion of the exhaust gas flow at a downstream side of the main body with the louvers hereby causing the second portion of the exhaust gas flow to flow in the first direction about the perforated tube.
Abstract:
The invention pertains to a spray/gas mixer, comprising: a main body having a circumferential wall with a first longitudinal axis (A) and extending from a first end to a second end, the first end defining an inlet opening, the second end defining an outlet opening; a divider baffle inside the interior; a swirl duct within the interior along a second longitudinal axis (B), having one end adjacent to the wall and a second end extending to the divider baffle; an injector orifice at the first end of the swirl duct; a swirl promoting means; and a restrictor arrangement. The swirl promoting means is arranged between the divider baffle and the restrictor arrangement, such that gas passing through the swirl promoting means is swirled around the first longitudinal axis (A) before passing through the restrictor. The restrictor arrangement is disposed between the swirl promoting means and the second end, forcing gas reaching it from an upstream side away from a peripheral region of the interior towards a center axis of the main body.
Abstract:
An aftertreatment device includes flow guides disposed within a dosing conduit. Exhaust enters through a perforated region of the dosing conduit and passes through the flow guides. The flow guides induce swirling or other turbulence to mix injected reactant with the exhaust gas. Various types of flow guides include cantilevered vanes, guide passageways, and louvered openings of a second conduit. Some types of flow guides induce localized mixing to inhibit deposit formation at the doser mounting unit. Other types of flow guides induce mixing downstream of the dosing conduit.
Abstract:
A method for causing exhaust gas flow to flow at least 270 degrees in a first direction about a perforated tube using a baffle plate having a main body with a plurality of flow-through openings and a plurality of louvers positioned adjacent to the flow-through openings. The method includes deflecting a first portion of the exhaust gas flow with the main body of the baffle plate. The method also includes allowing a second portion of the exhaust gas flow to flow through the flow-through openings of the baffle plate. The method also deflects the second portion of the exhaust gas flow at a downstream side of the main body with the louvers hereby causing the second portion of the exhaust gas flow to flow in the first direction about the perforated tube.
Abstract:
An exhaust treatment device is disclosed. The exhaust treatment device has a compact configuration that includes integrated reactant dosing, reactant mixing and contaminant removal/treatment. The mixing can be achieved at least in part by a swirl structure and contaminant removal can include NOx reduction.
Abstract:
A method for causing exhaust gas flow to flow at least 270 degrees in a first direction about a perforated tube using a baffle plate having a main body with a plurality of flow-through openings and a plurality of louvers positioned adjacent to the flow-through openings. The method includes deflecting a first portion of the exhaust gas flow with the main body of the baffle plate. The method also includes allowing a second portion of the exhaust gas flow to flow through the flow-through openings of the baffle plate. The method also deflects the second portion of the exhaust gas flow at a downstream side of the main body with the louvers hereby causing the second portion of the exhaust gas flow to flow in the first direction about the perforated tube.
Abstract:
An exhaust treatment device is disclosed. The exhaust treatment device has a compact configuration that includes integrated reactant dosing, reactant mixing and contaminant removal/treatment. The mixing can be achieved at least in part by a swirl structure and contaminant removal can include NOx reduction.
Abstract:
A dosing and mixing arrangement includes a mixing tube having a constant diameter along its length. At least a first portion of the mixing tube includes a plurality of apertures. The arrangement also includes a swirl structure for causing exhaust flow to swirl outside of the first portion of the mixing tube in one direction along a flow path that extends at least 270 degrees around a central axis of the mixing tube. The arrangement is configured such that the exhaust enters an interior of the mixing tube through the apertures as the exhaust swirls along the flow path. The exhaust entering the interior of the mixing tube through the apertures has a tangential component that causes the exhaust to swirl around the central axis within the interior of the mixing tube. The arrangement also includes a doser for dispensing a reactant into the interior of the mixing tube.
Abstract:
A mixing device includes a mixing cavity having a partially open wall and a closed wall. In certain examples, the partially open wall and the closed wall are two separately formed pieces. A downstream side of the mixing device is shaped so as to define a helicoidal groove for circumferentially guiding gas from an outlet opening of the mixing cavity in a downstream direction. An injector sprays reactant into the mixing cavity.