摘要:
A laser transmitter with a feedback control loop for minimizing noise. The novel laser transmitter includes a laser, an external reflector adapted to form an extended cavity to the laser, and a feedback control loop adapted to detect noise in the laser and in accordance therewith, adjust the optical phase of the extended cavity such that the noise is at a desired level. The optical phase of the extended cavity is adjusted by adjusting an operating parameter of the laser, such as its bias current. In an illustrative embodiment, the feedback control loop is adapted to compute the rate of change of the noise with respect to bias current and in accordance therewith, adjust the bias current of the laser such that relative intensity noise and interferometric intermodulation distortion are simultaneously minimized.
摘要:
A substantially lossless transmissive link, such as an RF fiber optic link, that selectively employs a number of techniques to improve various link parameters. The link may be structured to comprise a high power light source, such as a laser, that provides light output having a high level of optical power. A feedback circuit may be disposed around the light source that reduces relative-intensity-noise levels produced by the light source at low frequencies. A modulator is provided that modulates the light output of the light source. Preferably, a dual output modulator may be used to provide two modulated optical signals whose respective RF modulation is “effectively” 180 degrees out of phase. An optical fiber that transmits the modulated optical signal(s). A photodetector without a load resistor directly on its output that is operable at the high level of optical power, receives the modulated light and recovers the RF signal. A dual balaniced photodetector that is used in conjunction with the dual output modulator. An RF component, such as an amiplifier, that is coupled directly to an output of the photodetector that provides a load resistance for the link.
摘要:
An optical receiver with an enhanced power capability and wide bandwidth is implemented by distributing a number of photodetectors along an optical transmission channel to convert respective portions of an optical signal into electrical signals. An electrical transmission line receives and accumulates signal inputs from the photodetectors. A velocity matching is established between the optical and electrical signals, allowing the photodetector outputs to accumulate coherently along the electrical transmission line, by loading the transmission line with distributed capacitance elements. The loading capacitances are preferably inherent in the photodetectors, which are designed and spaced apart from each other to yield the desired velocity matching. Possible photodetectors include p-i-n photodiodes with associated depletion layer capacitances, and metal-semiconductor-metal devices in which the capacitance is provided by interdigitated fingers that extend over an active optically absorbing layer on the waveguide from electrodes on either side.
摘要:
In one of many possible implementations and embodiments, a method is provided for providing linearized phase modulation and demodulation in an RF-photonic link. This includes phase modulating a photonic carrier signal in a signal arm using the RF input and using the RF output in a negative feedback phase tracking loop to modulate either the RF input modulated carrier signal in the signal arm, or a signal in a local oscillator arm. Optical signals from the signal arm and the local oscillator arm are optically coupled. The optically coupled signals are photodetected and differentally combined. The differentially combined signals are amplified to provide the RF output signal. In some implementations, the photonic carrier signal is suppressed prior to photodetection. Further, in some implementations a small portion of the local oscillator signal may be coupled with the carrier suppressed optical signal.
摘要:
In one of many possible implementations and embodiments, a method is provided for providing linearized phase modulation and demodulation in an RF-photonic link. This includes phase modulating a photonic carrier signal in a signal arm using the RF input and using the RF output in a negative feedback phase tracking loop to modulate either the RF input modulated carrier signal in the signal arm, or a signal in a local oscillator arm. Optical signals from the signal arm and the local oscillator arm are optically coupled. The optically coupled signals are photodetected and differentally combined. The differentially combined signals are amplified to provide the RF output signal. In some implementations, the photonic carrier signal is suppressed prior to photodetection. Further, in some implementations a small portion of the local oscillator signal may be coupled with the carrier suppressed optical signal.
摘要:
An optical heterodyne system provides the radiation source and beam scan control of a millimeter wave (MMW) array antenna. The heterodyne system is an optical feed system to produce the MMW by mixing the optical outputs from two lasers, distribute the signal source to an array of radiating elements through a Rotman lens and optical fibers, generate the differential phase shift for beam scan in the optical domain, change the beam direction by switching the input laser being used to illuminate the Rotman lens or by varying the frequency of one of the laser sources. The feed system includes a plurality n-1 lasers spaced along the transmit side of the lens, and a center laser disposed on the center axis of the transmit side. A l:n switch receives a command input to determine which of the n-1 lasers will operate. The beat frequency between the center laser operating frequency and that of the n-1 lasers is the MMW frequency. N optical receive elements are spaced along the output side of the Rotman lens and are connected to a corresponding photodetector by equal length optical fibers. The output of each photodetector is amplified and fed to a corresponding radiating element. The system also operates in a corresponding receive mode.
摘要:
Optoelectronic switching apparatus employing optoelectronic switching devices interconnected by optical media having different delay lengths and an multiport optical coupler. The optoelectronic switching apparatus provides for a multibit true-time-delay beamsteerer for beamsteering phased array antennas. The present invention combines two types of optoelectronic devices, lasers and photodiode switches, using an interconnected passive optical network comprising the optical fibers and the optical coupler. The switches, and input and output signal networks coupled to the respective switches, are controlled using a control signal generator. Using this scheme, any input can be independently selected and a signal can be routed to any output. Furthermore, the product of the total number of different interconnect paths (N.times.M) is provided which provides a greater number of delay lengths than is provided by using only one type of switch (i.e. laser (N) or photodiode (M)) alone. The present invention also provides for improved insertion loss while increasing the number of delay paths.
摘要:
Transversal equalization is used to obtain broadband linearization of photonic modulation. A photonic link comprises a signal path and a feed-forward path. The feed-forward path includes an optical linearizer and a transversal equalizer connected with the optical linearizer. In this way, amplitude and phase matching of the error in the signal path is obtained over a wide bandwidth. This, in turn, enables a broadband enhancement of the link's spur free dynamic range (SFDR).
摘要:
A method and apparatus for implementing an RF photonic transversal filter that utilizes tap apodization and wavelength reuse to obtain a high side lobe suppression together with narrow and configurable passbands. Several taps are obtained from one wavelength by using dispersive optical delay lines such as chirped fiber gratings that introduce a delay between successive wavelengths. A selected subset of the input wavelengths is utilized to generate multiple taps per wavelength. Some of the taps are apodized to generate various filter transfer functions that yield a high side lobe suppression ratio.
摘要:
A method and apparatus for implementing an RF photonic transversal filter that utilizes tap apodization and wavelength reuse to obtain a high side lobe suppression together with narrow and configurable passbands. Several taps are obtained from one wavelength by using dispersive optical delay lines such as chirped fiber gratings that introduce a delay between successive wavelengths. A selected subset of the input wavelengths is utilized to generate multiple taps per wavelength. Some of the taps are apodized to generate various filter transfer functions that yield a high side lobe suppression ratio.