Abstract:
Method and apparatus for automatically locating the center of a ball bond of a wire to a lead frame and semiconductor chip or similar device; analyzing the optically sensed images; a bonding mechanism; and a host controller connected to the bonding mechanism, the movable platform. The present invention constructs a synthetic flattened cone model using a center radius, and monotonically increasing slope values to generate a model having a variation in grey levels, and inner and outer radii that will encompass expected size variations in a ball bond; sets a threshold for acceptable normalized correlation search results; acquires a digitized image of the bond, including a nominal location for the bond; conducts a normalized correlation search of the digitized image at the bond location, using the flattened synthetic cone model; and indicates the presence and location of the expected circular object as the location having the largest coefficient which exceeds a threshold.
Abstract:
A basic refractory shape resulting from firing a batch consisting essentially of a magnesite and a zirconia; said batch containing for each 100 percent by weight thereof about 3 to 20 percent by weight of coarse zirconia having a particle size of 150-mesh Tyler, or greater, and 0 to 20 percent by weight of fine zirconia having a particle size of finer than 150-mesh Tyler and a slide gate assembly comprising at least one such shape.
Abstract:
A method for training a pattern recognition algorithm including the steps of identifying the known location of the pattern that includes repeating elements within a fine resolution image, using the fine resolution image to train a model associated with the fine image, using the model to examine the fine image resolution image to generate a score space, examining the score space to identify a repeating pattern frequency, using a coarse image that is coarser than the finest image resolution image to train a model associated with the coarse image, using the model associated with the coarse image to examine the coarse image thereby generating a location error, comparing the location error to the repeating pattern frequency and determining if the coarse image resolution is suitable for locating the pattern within a fraction of one pitch of the repeating elements.
Abstract:
A method for training a pattern recognition algorithm for a machine vision system that uses models of a pattern to be located, the method comprising the steps of training each of a plurality of models using a different training image wherein each of the training images is a version of a single image of the pattern at a unique coarse image resolution, using the models to identify at least one robust image resolution where the image resolution is suitable for locating the pattern within an accuracy limit of the actual location of the pattern in the image and storing the at least one robust image resolution for use in subsequent pattern recognition processes.
Abstract:
A vision system is provided to determine a positional relationship between a photovoltaic device wafer on a platen and a printing element, such as a printing screen, on a remote side of the photovoltaic device wafer from the platen. A source emits ultraviolet light along a path that is transverse to a longitudinal axis of an aperture through the platen, and a diffuser panel is located along that path. A reflector directs the light from the diffuser panel toward the aperture. A video camera is located along the longitudinal axis of the aperture and produces an image using light received from the platen aperture, wherein some of that received light was reflected by the wafer. A band-pass filter is placed in front of the camera to block ambient light. The use of diffused ultraviolet light enhances contrast in the image between the wafer and the printing element.
Abstract:
An effervescent tablet that includes from about 20% by weight to about 80% by weight effervescent agent that includes an acid and a base, from about 5% by weight to about 25% by weight a first binder, and at least 0.1% by weight oil component that includes at least one of a fatty acid comprising an alkyl chain having at least 10 carbon atoms, safflower oil, canola oil, sunflower oil, flax seed oil, and wheat germ oil, the tablet having a hardness of at least 2 kiloponds. The tablet optionally includes from about 2% by weight to about 20% by weight of a component (e.g. Aspartame) that is insoluble in water, slightly soluble in water, or sparingly soluble in water or exhibits delayed solubility in water.
Abstract:
This invention provides a system and method for runtime determination (self-diagnosis) of camera miscalibration (accuracy), typically related to camera extrinsics, based on historical statistics of runtime alignment scores for objects acquired in the scene, which are defined based on matching of observed and expected image data of trained object models. This arrangement avoids a need to cease runtime operation of the vision system and/or stop the production line that is served by the vision system to diagnose if the system's camera(s) remain calibrated. Under the assumption that objects or features inspected by the vision system over time are substantially the same, the vision system accumulates statistics of part alignment results and stores intermediate results to be used as indicator of current system accuracy. For multi-camera vision systems, cross validation is illustratively employed to identify individual problematic cameras. The system and method allows for faster, less-expensive and more-straightforward diagnosis of vision system failures related to deteriorating camera calibration.
Abstract:
A method and apparatus is provided for illuminating a wafer during wafer alignment using machine vision. An illumination device is fabricated using electroluminescent material, that provides diffuse illumination uniformly over the surface of the lamp to provide backlighting of the wafer. Contrast between the image of the wafer and the diffuse illumination produce edge features in the image that can be analyzed to determine the position and orientation of the wafer.
Abstract:
The invention provides, in some aspects, a wafer alignment system comprising an image acquisition device, an illumination source, a rotatable wafer platform, and an image processor that includes functionality for mapping coordinates in an image of an article (such as a wafer) on the platform to a “world” frame of reference at each of a plurality of angles of rotation of the platform.
Abstract:
An efficient and reliable method and apparatus is disclosed that finds a reference point of an object profile within an image when the object is of an unknown size. The object profile is modeled using a synthetic labeled-projection model, which in conjunction with the image, is projected over a portion of the image of the object profile to derive a histogram. The histogram is normalized and a maximum of a first derivative of the histogram is defined for that position. The position of the labeled-projection model is moved relative to the image, and the process is repeated until a selected portion of the image has been examined. The first derivative of the normalized labeled projection is greatest when a feature of the image and the feature denoted by a specific synthetic label of the labeled-projection model are aligned. The method and apparatus can locate the center of the object with reliability, because use of the labeled-projection model and the histogram minimizes the * effects of image artifacts. Further, the method decreases computational time, and thus, increases performance speed.