摘要:
A combustion turbine component (10) includes a combustion turbine component substrate (16) and an alloy coating (14) on the combustion turbine component substrate. The alloy coating (14) includes a first amount, by weight percent, of nickel (Ni) and a second amount, by weight percent, of cobalt (Co), the first amount being greater than the second amount. The alloy coating also includes chromium (Cr), aluminum (Al), and yttrium (Y). The alloy coating further includes at least one of titanium (Ti), tantalum (Ta), tungsten (W), and rhenium (Re). Moreover, the alloy coating includes at least one rare earth element, and an oxide of at least one of the yttrium the at least one rare earth element.
摘要:
A combustion turbine component (10) includes a combustion turbine component substrate (16) and an alloy coating (14) on the combustion turbine component substrate. The alloy coating (14) includes a first amount, by weight percent, of cobalt (Co) and a second amount, by weight percent, of nickel (Ni), the first amount being greater than the second amount. The alloy coating further includes chromium (Cr), aluminum (Al), at least one rare earth element, and an oxide of the at least one rare earth element.
摘要:
A method of manufacturing a metallic component includes atomizing, in an inert atmosphere, a metallic liquid having at least one rare-earth element and at least one non rare-earth element to form a metallic powder. A series of heat treating steps are performed on the metallic powder. A first heat treating step is performed in an oxidizing atmosphere, and a second heat treating step is performed in an inert atmosphere. A third heat treating step is performed in a reducing atmosphere to form a metallic power having an increased proportion of rare-earth oxides compared to non rare-earth oxides. The metallic component is formed from the metallic powder having the increased proportion of rare-earth oxides compared to non rare-earth oxides.
摘要:
A combustion turbine component (10) includes a combustion turbine component substrate (16) and an alloy coating (14) on the combustion turbine component substrate. The alloy coating (14) includes iron (Fe), chromium (Cr), aluminum (Al), at least one of titanium (Ti) and molybdenum (Mo), at least one rare earth element, and an oxide of the at least one rare earth element.
摘要:
A method of making a combustion turbine component includes forming a metallic powder including at least one metal and at least one rare-earth element and processing the metallic powder including at least one metal and at least one rare-earth element to form a cohesive metallic mass. A primary aging heat treatment may be performed on the cohesive metallic mass. A homogenization heat treatment may be performed on the cohesive metallic mass prior to the primary aging heat treating. Furthermore, a secondary aging heat treatment may be performed on the cohesive metallic mass after the primary aging heat treating.
摘要:
A coated substrate with a subsurface cooling channel having no corner disposed proximate a seam between the substrate and the coating. A method for forming such a structure, including forming a groove in a surface of a substrate, forming a preform having a cooperating portion and a protruding portion, inserting the cooperating portion of the preform into the groove, leaving the protruding portion of the preform protruding beyond the surface of the substrate, applying a layer of a coating material to the surface of the substrate and the protruding portion of the perform, and removing the preform, thereby creating a cooling channel.
摘要:
A method is provided for restoring a near-wall channeled gas turbine engine component (100, 200) which has been exposed to engine operation. In a representative embodiment, a cooling channel (102) of the component (100) is filled with a polymer that solidifies to form a preform material (110) in the cooling channel (102). Then existing outer wall layers (106, 108) of the component (100) are removed, thereby exposing in part the preform material (110). New outer wall layers (106-N, 108-N) are applied over the component (100), and this may be done while a cooling flow is also applied to the component (100). Then the preform material (110) is removed without destroying the new outer wall layers (106-N, 108-N). The new outer wall layers (106-N, 108-N) may be applied by HVOF processes or by other methods.
摘要:
A turbine airfoil system for forming a turbine airfoil that is usable in a turbine engine. The airfoil may be formed from a porous material shaped into an outer airfoil shape. The porous material may include an inner central spar capable of supporting the turbine airfoil an outer porous region and an outer coating. The porous material facilitates efficient cooling of the turbine airfoil.
摘要:
An intermediate component includes a first wall member, a leachable material layer, and a precursor wall member. The first wall member has an outer surface and first connecting structure. The leachable material layer is provided on the first wall member outer surface. The precursor wall member is formed adjacent to the leachable material layer from a metal powder mixed with a binder material, and includes second connecting structure.
摘要:
Disclosed are novel nickel-base alloy compositions that may be cast as a single crystal or directionally solidified alloy consisting essentially of, by weight: 8-12% Cr, 10-14% Co, 0.3-0.9% Mo, 3-7% W, 2-8% Ta, 2.0-5.5% Al, 1.5-5.0% Ti, up to 2% Nb, less than 0.1% B, less than 0.1% Zr, 0.05-0.15% C, less than 0.5% Hf, 2-4% Re, 0.05-0.2% Si, up to 0.015% S, up to 0.1% La, up to 0.1% Y, up to 0.1% Ce, up to 0.1% Nd, up to 0.1% Dy, up to 0.1% Pr, up to 0.1% Gd, balance is Ni, and wherein (La+Y+Ce+Nd+Dy+Pr+Gd) is 0.001-0.1%. The compositions for the nickel-base superalloy have a balance between oxidation resistance, corrosion resistance, castability, and mechanical properties, such as creep resistance and thermo-mechanical fatigue resistance.
摘要翻译:公开了可以铸造为单晶或定向凝固合金的新型镍基合金组合物,其基本上由以重量计:8-12%Cr,10-14%Co,0.3-0.9%Mo,3-7%W ,2-8%Ta,2.0-5.5%Al,1.5-5.0%Ti,至多2%Nb,小于0.1%B,小于0.1%Zr,0.05-0.15%C,小于0.5%Hf,2 -4%Re,0.05-0.2%Si,至多0.015%S,至多0.1%La,至多0.1%Y,至多0.1%Ce,至多0.1%Nd,至多0.1%Dy,至多0.1 %Pr,高达0.1%的Gd,余量为Ni,其中(La + Y + Ce + Nd + Dy + Pr + Gd)为0.001-0.1%。 镍基超级合金的组合物在抗氧化性,耐腐蚀性,浇铸性和机械性能如抗蠕变性和耐热机械疲劳性之间具有平衡。