Abstract:
Disclosed are fibers which contain identification fibers. The identification fibers can contain a one or more of chemical markers and one or more distinct features, or taggants, which may vary among the fibers or be incorporated throughout all of the fibers. The chemical markers and distinct features can be representative of specific supply chain information. The supply chain information can be used to track the fibers from manufacturing through intermediaries, conversion to final product, and/or the consumer. The disclosed embodiments also relate to the method for making and characterizing the fibers. Characterization of the fibers can include identifying chemical markers and distinct features and correlating the chemical markers and distinct features to manufacturer-specific taggants to determine supply chain information.
Abstract:
Disclosed is a method of making an acetate tow bands comprising identification fibers which can be used for tracking and tracing the acetate tow band through at least part of the supply chain. Each identification fiber exhibits at least one distinct feature. Each group of distinguishable identification fibers can exhibit a taggant cross-section shape, a taggant cross-section size, or combination of the same taggant cross-section shape and same taggant cross-section size. The distinct features and the number of fibers in each group of distinguishable identification fibers can represent at least one supply chain component of the acetate tow band, including the manufacturer of the acetate tow band and the customer of the acetate tow band. The identification fibers can be produced on a cellulose acetate tow line using one or more spinnerets with spinneret holes to produce the taggant cross-section shapes and/or taggant cross-section sizes.
Abstract:
A fiber delivery system capable of providing cut fiber segments for use in treating an oil and/or gas well. The fiber delivery system can utilize bales of a continuous filamentary tow that are transported to the well site from a remote manufacturing location. At the well site, a multifilament strand can be pulled off the bale, opened, and cut to provide cut fiber segments. The cut fiber segments can be mixed with other well treatment components to create a well treatment medium that is introduced into the well as part of a drilling, stimulation, or cementing process.
Abstract:
Disclosed are fibers which contain identification fibers. The identification fibers can contain a plurality of distinct features, or taggants, which vary among the fibers and/or along the length of the identification fibers, tow band, or yarn. The disclosed embodiments also relate to the method for making the fibers. Characterization of the fibers can include identifying distinct features, combinations of distinct features, and number of fibers with various combinations of distinct features and correlating the distinct features to supply chain information. The supply chain information can be used to track the fibers, fiber band, or yarn from manufacturing through intermediaries, conversion to final product, and/or the consumer.
Abstract:
Disclosed are fibers which contain identification fibers. The identification fibers can contain a one or more of chemical markers and one or more distinct features, or taggants, which may vary among the fibers or be incorporated throughout all of the fibers. The chemical markers and distinct features can be representative of specific supply chain information. The supply chain information can be used to track the fibers from manufacturing through intermediaries, conversion to final product, and/or the consumer. The disclosed embodiments also relate to the method for making and characterizing the fibers. Characterization of the fibers can include identifying chemical markers and distinct features and correlating the chemical markers and distinct features to manufacturer-specific taggants to determine supply chain information.
Abstract:
Disclosed are fibers which contains identification fibers. The identification fibers can contain a plurality of distinct features, or taggants, which vary among the fibers and/or along the length of the identification fibers, a fiber band, or yarn. The disclosed embodiments also relate to the method for making and characterizing the fibers. Characterization of the fibers can include identifying distinct features, combinations of distinct features, and number of fibers with various combinations of distinct features and correlating the distinct features to supply chain information. The supply chain information can be used to track the fibers, fiber band, or yarn from manufacturing through intermediaries, conversion to final product, and/or the consumer.
Abstract:
Degradable materials are provided that may be utilized in various wellbore treatment fluids, such as hydraulic fracturing fluids. In particular, the degradable materials can be formed from cellulose esters that are capable of effectively degrading at specific rates when exposed to the aqueous environments commonly found in wellbores. More particularly, the degradable materials can be in the form of degradable fibers that are formed from the cellulose esters described herein.
Abstract:
Disclosed is a method of characterizing a fiber sample comprising standard fibers and identification fibers which can be used for tracking and tracing fibers through at least part of the supply chain. Each identification fiber exhibits at least one distinct feature. Each group of distinguishable identification fibers can exhibit a taggant cross-section shape, a taggant cross-section size, or combination of the same taggant cross-section shape and same taggant cross-section size. The distinct features and the number of fibers in each group of distinguishable identification fibers can represent at least one supply chain component of the fibers. The fiber sample can include a portion of an acetate tow band or a filter made from the acetate tow band, and the supply chain information can include the manufacturer of the acetate tow band and the customer of the acetate tow band.
Abstract:
A high population density of closed C shaped cellulose acetate filament can now be reliably produced. The closed C filaments are made from a spinneret having a. substantially D shaped orifice under particular processing conditions depending on the dpf of the filament, the theta angle of the D shaped orifice, and dope temperature. The process can make a high population count of closed C shaped fibers in a. tow band, and article are not provided having the high population density of closed C shaped fibers.
Abstract:
Disclosed are fibers which contain identification fibers. The identification fibers can contain a one or more of chemical markers and one or more distinct features, or taggants, which may vary among the fibers or be incorporated throughout all of the fibers. The chemical markers and distinct features can be representative of specific supply chain information. The supply chain information can be used to track the fibers from manufacturing through intermediaries, conversion to final product, and/or the consumer. The disclosed embodiments also relate to the method for making and characterizing the fibers. Characterization of the fibers can include identifying chemical markers and distinct features and correlating the chemical markers and distinct features to manufacturer-specific taggants to determine supply chain information.