Abstract:
The present invention relates to a method of pre-rinsing laundry and treating other surfaces employing a composition that can kill bedbug eggs. The composition includes a fatty alcohol and an alcohol ethoxylate.
Abstract:
In situ cleaning systems and methods of use are disclosed and provide cleaning use solutions with minimal chemical additives providing environmentally-friendly cleaning compositions. The in situ cleaning system provides one or more in situ cleaning components, including water treatment components, oxidizing agent generating component and/or alkalinity generating component, providing a cleaning use solution to a washing system.
Abstract:
The invention is directed to a cleaning composition and method for reducing yellow stains caused by sunscreen components such as avobenzone, oxybenzone, homosalate, octinoxate, octisalate, octocrylene or combinations thereof. The cleaning composition employs a synergistic combination of an amine oxide/solvent and a souring agent.
Abstract:
Treated peroxycarboxylic acid bleaching compositions and methods of using the same are provided to enhancing bleaching performance of various peroxycarboxylic acids. Peroxycarboxylic acid peroxycarboxylic acid compositions are combined with non-metal bleach activators, preferably polyethyleneimines. The invention further relates to methods employing the enhanced bleaching compositions.
Abstract:
A cleaning composition is provided including an alkalinity source, builder, surfactant, water, a reducing agent and amylase in the ratio of from about 1:1 to about 1:3 wherein the total amount of amylase in the composition is equal to or less than about 1.0 weight percent; and wherein the composition is substantially free of polyols, alkanolamine, phosphates, and boric acid. A method of presoaking soiled substrates is further provided. The method including the steps of providing presoak solution to a soiled substrate at a temperature of between about 65.5° C. up to about 80° C., the presoak solution including the provided composition; draining the presoak solution from the substrate; providing a detergent to a soiled substrate including the composition of the present invention; and removing or draining the detergent; and rinsing the substrate with water.
Abstract:
Methods of cleaning sugar evaporators with a cleaning composition comprising a sugar or sugar-moiety containing compound are disclosed. The methods are capable of improved scale and fouling removal from treated surfaces, including scale containing calcium oxalate, calcium dihydrogen phosphate, silica and/or other components from sugar evaporators. The methods reduce time required for scale removal without the need for highly alkaline cleaning compositions, elevated temperatures and/or mechanical force applied to the scale.
Abstract:
The present invention is related to methods, apparatuses, and compositions for controlling water hardness. The methods, apparatuses and compositions also reduce scale formation. The present invention includes substantially water insoluble resin materials. The resin materials may be loaded with a plurality of cations.
Abstract:
Compositions and methods for improved cleaning using neutral cleaners are disclosed. In particular, neutral pH cleaning compositions according to the invention employ a synergistic combination of water insoluble surfactants and an anionic hydrotropes capable of forming a stable, low-foaming solution. The neutral cleaning solutions provide significant benefits over water insoluble microemulsions traditionally used for neutral cleaning compositions and provide at least equivalent cleaning efficacy as non-neutral cleaning compositions.
Abstract:
A method of creating a protective coating on an alkali metal hydroxide-containing solid is provided. The method includes providing carbon dioxide to an alkali metal hydroxide-containing solid and allowing the alkali metal hydroxide and carbon dioxide to react thereby forming a carbonate or bicarbonate-containing layer on the exterior of the solid wherein the carbonate or bicarbonate-containing layer is non-hygroscopic and water soluble, and wherein greater than 80% of the hydroxide in the hydroxide-containing solid does not react with the carbon dioxide, and further wherein the alkali metal hydroxide-containing solid is substantially free of lithium hydroxide. A method of testing for the presence of carbonate-containing coating on an alkali metal hydroxide containing solid is also provided. The method includes exposing the coated solid to 95 weight percent ethanol, collecting the ethanol effluent and testing the effluent for alkali metal hydroxide. A suitably coated solid does not have dissolved alkali metal hydroxide in the ethanol effluent or is substantially free of alkali metal hydroxide.