Abstract:
The invention discloses compositions and methods for generating alkalinity in situ. The compositions and methods relate to the use of a fabric source containing a decomposition agent to catalyze the decomposition of a dilute peroxygen source. The methods provide a highly alkaline cleaning composition produced at a desired time and place of use. Methods of cleaning are also disclosed.
Abstract:
A fluid product dispenser is sized to removably receive a product package containing a supply of the fluid product. The product package includes an internally integrated fluid pump, and the dispenser includes a drive unit powered by flow of a fluid. Flow of the fluid powers the drive unit, which in turn drives the pump internal to the product package, resulting in dispensation of the fluid product in a product/fluid ratio that is independent of the fluid flow rate.
Abstract:
Methods for using in situ cleaning systems which reduce water hardness and minimize chemical additives are provided. According to the methods and systems, the methods of using may comprise providing feed water to an in situ cleaning system including water treatment components, oxidizing agent generating components and/or alkalinity generating components, contacting one or more articles with a use solution generated by the in situ cleaning system, and washing the one or more articles in a washing system. In addition to the methods of using, the systems for in situ cleaning are provided.
Abstract:
In situ cleaning systems and methods of use are disclosed and provide cleaning use solutions with minimal chemical additives providing environmentally-friendly cleaning compositions. The in situ cleaning system provides one or more in situ cleaning components, including water treatment components, oxidizing agent generating component and/or alkalinity generating component, providing a cleaning use solution to a washing system.
Abstract:
A method of creating a protective coating on an alkali metal hydroxide-containing solid is provided. The method includes providing carbon dioxide to an alkali metal hydroxide-containing solid and allowing the alkali metal hydroxide and carbon dioxide to react thereby forming a carbonate or bicarbonate-containing layer on the exterior of the solid wherein the carbonate or bicarbonate-containing layer is non-hygroscopic and water soluble, and wherein greater than 80% of the hydroxide in the hydroxide-containing solid does not react with the carbon dioxide, and further wherein the alkali metal hydroxide-containing solid is substantially free of lithium hydroxide. A method of testing for the presence of carbonate-containing coating on an alkali metal hydroxide containing solid is also provided. The method includes exposing the coated solid to 95 weight percent ethanol, collecting the ethanol effluent and testing the effluent for alkali metal hydroxide. A suitably coated solid does not have dissolved alkali metal hydroxide in the ethanol effluent or is substantially free of alkali metal hydroxide.
Abstract:
In situ cleaning systems and methods of use are disclosed and provide cleaning use solutions with minimal chemical additives providing environmentally-friendly cleaning compositions. The in situ cleaning system provides one or more in situ cleaning components, including water treatment components, oxidizing agent generating component and/or alkalinity generating component, providing a cleaning use solution to a washing system.
Abstract:
A method of creating a protective coating on an alkali metal hydroxide-containing solid is provided. The method includes providing carbon dioxide to an alkali metal hydroxide-containing solid and allowing the alkali metal hydroxide and carbon dioxide to react thereby forming a carbonate or bicarbonate-containing layer on the exterior of the solid wherein the carbonate or bicarbonate-containing layer is non-hygroscopic and water soluble, and wherein greater than 80% of the hydroxide in the hydroxide-containing solid does not react with the carbon dioxide, and further wherein the alkali metal hydroxide-containing solid is substantially free of lithium hydroxide. A method of testing for the presence of carbonate-containing coating on an alkali metal hydroxide containing solid is also provided. The method includes exposing the coated solid to 95 weight percent ethanol, collecting the ethanol effluent and testing the effluent for alkali metal hydroxide. A suitably coated solid does not have dissolved alkali metal hydroxide in the ethanol effluent or is substantially free of alkali metal hydroxide.
Abstract:
The present invention relates to methods, apparatuses, and systems for treating water. The methods, apparatuses and systems reduce scaling associated with solubilized water hardness using a sequence of water treatment agents, including an inlet, one or more treatment reservoirs containing a first treatment agent that is an exhausted ionic resin that is incapable of performing ion exchange and a second treatment agent consisting of a metal oxide and/or hydroxide compound, an outlet, and a treated water delivery line.
Abstract:
A fluid product dispenser is sized to removably receive a product package containing a supply of the fluid product. The product package includes an internally integrated fluid pump, and the dispenser includes a drive unit powered by flow of a fluid. Flow of the fluid powers the drive unit, which in turn drives the pump internal to the product package, resulting in dispensation of the fluid product in a product/fluid ratio that is independent of the fluid flow rate.
Abstract:
In situ cleaning systems and methods of use are disclosed and provide cleaning use solutions with minimal chemical additives providing environmentally-friendly cleaning compositions. The in situ cleaning system provides one or more in situ cleaning components, including water treatment components, oxidizing agent generating component and/or alkalinity generating component, providing a cleaning use solution to a washing system.