Abstract:
Provided is an optical fingerprint recognition sensor. The optical fingerprint recognition sensor includes a transparent light emitting unit configured to emit light to a fingerprint, a light receiving unit disposed below the light emitting unit to vertically overlap the light emitting unit and configured to receive light reflected by the fingerprint, and a control unit disposed below the light emitting unit to vertically overlap the light emitting unit and configured to control the light emitting unit and the light receiving unit. The light emitting unit includes an organic layer.
Abstract:
Provided is a display device and a manufacturing method thereof. More specifically, the present invention relates to a display device including a nickel oxide thin film co-doped with a copper monovalent cation and a copper divalent cation, and a manufacturing method thereof. The present invention provides a display device including a substrate, a first electrode layer disposed on the substrate, a first common layer disposed on the substrate, a light emitting layer disposed on the first common layer, a second common layer disposed on the light emitting layer, and a second electrode layer disposed on the second common layer, wherein the first common layer includes a nickel oxide thin film co-doped with a first metal cation and a second metal cation, and the oxidation number of the first metal cation and the oxidation number the second metal cation are different from each other.
Abstract:
Provided is a method of manufacturing an organic light emitting device, the method including forming a lower electrode on a lower substrate, forming an organic layer on the lower electrode, forming a light extraction layer including an adhesion layer and nanoparticles on an upper substrate, forming an upper electrode on the light extraction layer, and coupling the lower substrate to the upper substrate so that the upper electrode contacts the organic layer. The forming of the light extraction layer includes providing an adhesive between a first sacrificial substrate and the upper substrate, curing the adhesive to form the adhesion layer to form the adhesion layer, and removing the first sacrificial substrate to expose the adhesion layer. The first sacrificial substrate and the upper substrate are coupled to each other by the adhesion layer.
Abstract:
A composition for forming film having wrinkle structure and a method of forming the film are disclosed. The composition includes photo-curable agent and photoinitiator dissolved in the photo-curable agent. The cut off wavelength of light transmittance of the photo-curable agent is greater than the cut off wavelength of light absorbance of the photoinitiator. Photo-cured thin film is formed at the upper portion of composition layer at an initial time period of irradiation. By subsequent contraction, the photo-cured thin film forms wrinkles. The wrinkle structure is controlled by the relation of the cut off wavelength of light transmittance of the photo-curable agent and the cut off wavelength of light absorbance of the photoinitiator, the photo-curing rate of the composition and the thickness of the composition layer, and the photoinitiator concentration, etc., before photo-curing. The film may increase the emission efficiency of LED and OLED and the sensing effect of sensor.
Abstract:
Provided is a method of manufacturing an organic light-emitting diode including forming an anode on a substrate, forming an organic light-emitting layer on the anode, forming a cathode on the organic light-emitting layer, and forming a light scattering film on the cathode. The light scattering film is a polycrystalline dielectric material composed of anisotropic crystals, and a surface roughness Ra of a top surface of the light scattering film is greater than or equal to about 50 nm by an anisotropic crystal growth of particles of the dielectric material.
Abstract:
Provided is a method of manufacturing an organic light-emitting diode including forming an anode on a substrate, forming an organic light-emitting layer on the anode, forming a cathode on the organic light-emitting layer, and forming a light scattering film on the cathode. The light scattering film is a polycrystalline dielectric material composed of anisotropic crystals, and a surface roughness Ra of a top surface of the light scattering film is greater than or equal to about 50 nm by an anisotropic crystal growth of particles of the dielectric material.
Abstract:
The inventive concept provides an organic electronic device and a method of fabricating the same. The organic electronic device includes a flexible substrate configured to include a first region and a second region which are laterally spaced apart from each other, an organic light-emitting diode disposed in the first region of the flexible substrate, and a photodetector disposed in the second region of the flexible substrate, wherein the organic light-emitting diode and the photodetector are disposed on the same plane.
Abstract:
Embodiments of the inventive concepts provide a method of fabricating a flexible substrate and the flexible substrate fabricated thereby. The method includes printing a gate catalyst pattern on a separation layer, forming a gate plating pattern on the gate catalyst pattern, forming a gate insulating layer on the gate plating pattern, printing a source catalyst pattern and a drain catalyst pattern spaced apart from each other on the gate insulating layer, and forming a source plating pattern and a drain plating pattern on the source catalyst pattern and the drain catalyst pattern, respectively.
Abstract:
Disclosed are an organic light emitting device and a method of fabricating the same. The method of fabricating an organic light emitting device comprises forming a flexible substrate, and forming an organic light emitting layer on the flexible substrate. The forming the flexible substrate comprises, forming a first polymer pattern on a first metal layer, forming a second metal layer on an exposed portion of the first metal layer through the first polymer pattern, forming a gas barrier layer on the first polymer pattern and the second metal layer, forming a second polymer layer on the gas barrier layer, and removing the first metal layer to expose a surface of the first polymer pattern and a surface of the second metal layer.
Abstract:
Provided are a method for manufacturing an integrated substrate for an organic light emitting diode, an organic light emitting diode, and a method for manufacturing an organic light emitting diode, wherein the method for manufacturing an organic light emitting diode may include forming a sacrificial layer on a release substrate, forming a first electrode on the sacrificial layer, forming on the first electrode an auxiliary electrode pattern having an opening, forming a buffer layer on the auxiliary electrode pattern and in the opening, providing a substrate on the buffer layer, removing the release substrate and the sacrificial layer to expose a first surface of the first electrode, and laminating an organic light emitting layer and a second electrode on the first surface of the first electrode.