Abstract:
Provided is a method of manufacturing a secondary battery separator including dissolving a polymer binder in water to prepare an aqueous binder solution, dispersing particles in the aqueous binder solution to prepare an aqueous slurry, and preparing a separator substrate, and applying the aqueous slurry on an upper surface and a lower surface of the separator substrate to form an aqueous slurry coating layer, wherein the separator substrate includes a hydrophobic material, the polymer binder is water-soluble, and the aqueous slurry has a viscosity of about 100 cP to about 6000 cP.
Abstract:
Provided is a method for manufacturing a lithium battery, wherein the method may include preparing a first electrode structure including a first current collector, a first electrode layer, and first electrode columns, which are stacked, preparing a second electrode structure including a second current collector and a second electrode layer, and forming an electrolyte between the first electrode structure and the second electrode structure, the electrolyte may extend in between the first electrode columns, and the forming of the electrolyte may include preparing a mixture including inorganic particles, a polymer, and an organic solution, preparing a liquid-state mixture by heating the mixture, and applying the liquid-state mixture onto the first electrode columns, and the polymer may have nitrile groups.
Abstract:
An embodiment of the inventive concept provides a lithium battery including: a first pouch film; a first anode part on the first pouch film, the first anode part including a first anode terminal; a second cathode part on the first anode part; a polymer film on the second cathode part; a second anode part on the polymer film, the second anode part including a second anode terminal; a first cathode part on the second anode part; a second pouch film on the first cathode part; and an anode connector configured to penetrate the first and second anode terminals to provide an electrical connection between the first anode part and the second anode part.
Abstract:
The present disclosure relates to an all-solid-state secondary battery, and more particularly, to an all-solid-state secondary battery including a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode. Here, at least one of the positive electrode and the negative electrode includes a sulfide-based active material, the sulfide-based active material has a particle size of about 50 nm to about 5 µm, and the sulfide-based active material has a grain size of about 1 nm to about 10 nm.
Abstract:
Provided is a method of preparing a coating composition for a separator of a secondary battery, and particularly a method including dispersing a first monomer and a surfactant in a solvent to form micelles, adding a first initiator to the solvent and performing first polymerization reaction to form a precursor solution including an emulsion-type binder, and adding a second monomer and a second initiator to the precursor solution and performing second polymerization reaction to form an aqueous binder solution including a solution-type binder, wherein the emulsion-type binder has a core shape, the solution-type binder has a shell shape wrapping the emulsion-type binder, and the emulsion-type binder and the solution-type binder are chemically bonded.
Abstract:
Provided is a method for preparing a multi-dopant, oxide-based solid electrolyte. The method comprising preparing a mixture including a lithium (Li) compound, a lanthanum (La) compound, and a metal compound, the metal compound including a first metal element represented by M, adding a first precursor including a second metal element and a second precursor including a third metal element to the mixture, and performing a crystallization operation to form a compound represented by LixLa3M2O12 from the mixture having the first precursor and the second precursor mixed therein, wherein the compound is doped with the second and third metal elements.
Abstract:
Provided is a method for preparing an oxide based solid electrolyte, the method comprising preparing a mixture including a lithium (Li) compound, a lanthanum (La) compound, and a metal compound, the metal compound including a first metal element represented by M, adding a first precursor including a second metal element and a second precursor including a third metal element to the mixture, and performing a crystallization operation to form a compound represented by LixLa3M2O12 from the mixture having the first precursor and the second precursor mixed therein, wherein the compound is doped with the second and third metal elements.
Abstract:
Provided is a method for manufacturing a sulfide-based solid electrolyte including preparing a precursor comprising lithium sulfide, germanium sulfide, aluminum sulfide, phosphorus sulfide, and sulfur, conducting a mixing process of the precursor to prepare a mixture, and crystallizing the mixture to form a compound represented by Li9.7Al0.3Ge0.7P2S12. The sulfide-based solid electrolyte may have high ionic conductivity.
Abstract:
Disclosed is a battery residual value evaluation system, which includes a measurement unit that measures a voltage and a current of an external battery to generate a voltage signal and a current signal, a resistance calculation unit that generates a resistance value, a resistance change value, and a resistance change rate of the external battery for each of charging and discharging cycles of the external battery based on the voltage signal and the current signal, an external input unit that receives reference ranges from an outside, a determination unit that determines a battery residual value based on whether the resistance value, the resistance change value, and the resistance change rate fall within the reference ranges, respectively, and an output unit that outputs the determination result to the outside.
Abstract:
An electrolyte composition of the inventive concept may include a solvent, an electrolyte salt, a first additive, and a second additive. The first additive may include at least one among a phosphor (P) compound, a nitrogen (N) compound, a sulfur (S) compound, and a lithium (Li) compound, or combinations thereof, and the second additive may include at least one among a carbonate compound, a sulfur (S) compound, and a lithium (Li) compound, or combinations thereof.