Abstract:
A bicycle drive unit includes a motor, a transmission mechanism and a torque combining member. The motor includes a crank axle receiving hole. The transmission mechanism includes a plurality of selectable gear ratios. The torque combining member is operatively coupled to the motor and the transmission mechanism to combine an output of the motor and an output of the transmission mechanism together.
Abstract:
A bicycle drive apparatus comprises a bicycle crankset, a bicycle transmission, a drive assistance electric motor, a crank variation determining sensor and a microcomputer. The crank variation determining sensor is arranged to determine a variation value related to rotation of the bicycle crankset. The microcomputer includes a shift command section, a limiting section, a determining section and a limitation cancelling section. The shift command section issues a shift command commanding the bicycle transmission to change gears. The limiting section limits an output of the drive assistance electric motor upon issuance of the shift command. The determining section determines completion of a gear shift operation upon the variation value being within a prescribed range. The limitation cancelling section cancels the limitation of the output of the drive assistance motor upon the determining section determining the completion of the gear shift operation.
Abstract:
A bicycle hub includes a wheel securing structure having a retaining arrangement disposed with respect to the hub axle and a wheel securing shaft member. The retaining arrangement overrideably prevents the shaft member from being axially removed from the hub axle when in a predetermined position within the through bore of the hub axle. In other words, the retaining arrangement is arranged to releasably restrict relative axial movement between the shaft member and the hub axle when the shaft member is disposed in the through bore of the hub axle in a predetermined position so that unintended displacement of the wheel securing shaft structure from the hub axle is prevented during use of the wheel securing shaft structure.
Abstract:
A bicycle control device is basically provided with a base member, a shift control unit, a brake lever, a shift operating lever and a lever adjustment mechanism. The shift control unit is mounted to the base member. The brake lever is movably mounted relative to the base member. The shift operating lever is operatively coupled to the shift control unit to operate the shift control unit when the shift operating lever is moved from a rest position along a shift operating path. The shift operating lever is movable from the rest position along a non-shift movement path independently of the brake lever. The lever adjustment mechanism is operatively coupled to the shift operating lever to change a location of the rest position of the shift operating lever along the non-shift movement path.
Abstract:
A bicycle front derailleur includes a chain guide that is provided with a pushing element that is movable relative to the chain guide to assist in shifting a bicycle chain from a smaller front sprocket to an adjacent larger sprocket. The chain guide is part of a movable member that is movably coupled to a base member via a linkage assembly. The pushing element is rotatably coupled to the chain guide portion and activated by a chain to move relative to the inner chain guide member from a first position with the pushing element at rest to a second position in response to activation by the chain. The contact surface moves laterally outwardly into the chain receiving slot toward the outer chain guide member as the pushing element moves from the first position to the second position.
Abstract:
A wheel securing adapter is provided in a bicycle fork to attach a skewer of a wheel securing axle thereto. The wheel securing adapter is disposed in an axle mounting opening of the fork. The wheel securing adapter has an internally threaded bore and an external surface configured and arranged to cooperate with the axle mounting opening to prevent at least one of relative axial movement and relative rotational movement of the wheel securing adapter within the axle mounting opening. The fork includes a pair of fork legs having upper ends coupled to the fork stem and lower ends with axle mounting openings. Preferably, a cutout surrounds one of the axle mounting openings on an inner side surface that faces the other fork leg to form the mounting opening for the wheel securing adapter.
Abstract:
A bicycle power supply system comprises a first power supply, a second power supply, and a power supply level sensing structure. The power supply level sensing structure is operatively coupled to the first and second power supplies. The first and second power supplies are selectively electrically coupled with electrical power being supplied from the second power supply to the first power supply while a first power supply level is detected by the power supply level sensing structure to be below a first prescribed power threshold, and with electrical power being supplied from the first power supply to the second power supply while a second power supply level is detected by the power supply level sensing structure to be below a second prescribed power threshold.
Abstract:
A bicycle is provided with a frame, a drive member and a bicycle brake. The drive member is movably mounted to the frame for driving the bicycle. The bicycle brake is mounted to the frame. The bicycle brake includes a quick release mechanism that has an operating part and a contact part. The operating part is operatively arranged to be toggled between a closed position and a released position that is separated from the closed position. The contact part is provided on the operating part and configured such that the operating part contacts the drive member while the operating part is positioned at the released position. The contact part is configured such that after the contact part contacts the drive member due to operation of the drive member, the operating part is then moved from the released position to the closed position.
Abstract:
A bicycle component (e.g., a rear derailleur) is basically provided with a base member and an axle. The axle includes a base supporting part supporting the base member for pivoting about a center axis of the axle and a base attaching part projecting outwardly of the base member for fixedly attachment to a bicycle frame. The base supporting part and the base attaching part overlap to define a coupling interface in which either a fixing element is disposed between the coupling interface of the base supporting part and the base attaching part or one of the base supporting part and the base attaching part is deformed with an interference fit. The base supporting part is formed of a first material with a first specific gravity. The base attaching part is formed of a second material with a second specific gravity that is higher than the first specific gravity.
Abstract:
A bicycle wheel includes a rim, a tire and a tire retainer. The rim has an annular bridge and a pair of annular flanges with tire retaining ridges. The annular flanges extend outward from the annular bridge to define an annular space. The tire has a pair of annular bead portions that are engaged with the tire retaining ridges of the rim, respectively. The tire retainer is disposed within the annular space. The tire retainer has a support body that is disposed between the bead portions of the bicycle tire. The support body has an axial width that is dimensioned such that the bead portions of the bicycle tire are prevented from disengaging from the tire retaining ridges of the wheel rim, respectively, while the bicycle tire is disposed in the annular space.