Abstract:
An integrated process for making di-functional or multi-functional molecules with concurrent light paraffin upgrading is disclosed. The process involves three primary steps: (1) oxidation of an iso-paraffin to alkyl hydroperoxide and alcohol; (2) converting the alkyl hydroperoxide and alcohol to dialkyl peroxide; and (3) coupling functional molecules into di-functional or multi-functional molecules using the dialkyl peroxide as a radical initiator, while the dialkyl peroxide is converted to a tertiary alcohol. The functional molecules include any functional molecule R—X, where R is a hydrocarbyl group and X is a functional group such as —OH, —CN, —C(O)OH, —NH—, or the like.
Abstract:
A process for converting light paraffins to heavier paraffinic hydrocarbon fluids is disclosed. The process involves: (1) oxidation of iso-paraffins to alkyl hydroperoxides and alcohols; (2) conversion of the alkyl hydroperoxides and alcohols to dialkyl peroxides; and (3) radical-initiated coupling of paraffins and/or iso-paraffins using the dialkyl peroxides as radical initiators, thereby forming heavier hydrocarbon products. Fractionation of the heavy hydrocarbon products can then be used to isolate fractions for use as hydrocarbon fluids.
Abstract:
Provided are processes for making hydrocarbons from renewable feed sources. In an embodiment, there is provided a method for co-producing lube basestock and transportation fuel from a feedstock of biological origin, the method including: a) converting a feedstock of biological origin to a ketone or a dimer acid in the presence of a first catalyst; and b) hydrogenating the ketone or the dimer acid to produce a hydrocarbon in the presence of a second catalyst comprising a hydrogenation catalyst and a hydrothermally stable binder.
Abstract:
Provided are processes for making hydrocarbons from renewable feed sources. In an embodiment, there is provided a method for producing a lube basestock including: contacting a compound of Formula (I) and a feedstock of biological origin with a catalyst component including a basic material: wherein R1 is selected from acyclic hydrocarbyl, cyclic hydrocarbyl, and aryl, wherein R1 has one or more optional substitutions selected from the group consisting of —Ra, —ORa, —C(O)Ra, and —C(O)ORa, wherein Ra is H or C1-C6 alkyl group; and n is 1, 2, 3, 4 or 5; and hydrogenating a ketone to a hydrocarbon with a catalyst including a hydrogenation catalyst and a hydrothermally stable binder.
Abstract:
Feeds containing triglycerides are processed to produce an olefinic diesel fuel product and propylene. The olefinic diesel can optionally be oligomerized to form a lubricant base oil product. The olefinic diesel and propylene are generated by deoxygenating the triglyceride-containing feed using processing conditions that enhance preservation of olefins that are present in the triglycerides. The triglyceride-containing feed is processed in the presence of a catalyst containing a Group VI metal or a Group VIII metal and optionally a physical promoter metal.
Abstract:
A process for converting light paraffins and/or light hydrocarbons to a high octane gasoline composition is disclosed. The process involves: (1) oxidation of iso-paraffins to alkyl hydroperoxides and alcohol; (2) conversion of the alkyl hydroperoxides and alcohol to dialkyl peroxides; and (3) radical coupling of one or more iso-paraffins and/or iso-hydrocarbons using the dialkyl peroxides as radical initiators, thereby forming a gasoline composition comprising gasoline-range molecules including a C7 enriched gasoline composition having a road octane number (RON) greater than 100.
Abstract:
A method may include reacting at least a naphtha range alkane with oxygen and to produce oxygenate products; reacting at least a portion of the oxygenate products to produce condensed products; and reacting at least a portion of the condensed products with at least hydrogen to produce a distillate range product.
Abstract:
Provided are processes for preparing alpha, beta-unsaturated functional compounds using four major reaction steps: 1) air oxidation of an iso-paraffin to a mixture of alkyl hydroperoxide and alcohol; 2) converting the alkyl hydroperoxide and alcohol to dialkyl peroxide; 3) oxidative cross-coupling between a primary or secondary alcohol and a compound comprising at least one R3CH2- (R3=hydrogen or an optionally substituted hydrocarbyl) moiety to afford a coupled product using the dialkyl peroxide as a radical initiator, while the dialkyl peroxide is converted to a tertiary alcohol; 4) dehydration of the coupled product to yield an alpha, beta-unsaturated functional compound.
Abstract:
Provided are processes for making saturated hydrocarbons from renewable feed sources. In an embodiment, a process for producing a lube basestock and/or a diesel fuel from a feedstock of biological origin includes: contacting the feedstock in a single reactor in the presence of hydrogen with catalyst components including a first catalyst and a second catalyst, wherein the first catalyst comprises an acidic material, a basic material, or a combination of both, and wherein the second catalyst is a hydrogenation catalyst including a hydrothermally stable binder.
Abstract:
Provided are processes for making saturated hydrocarbons from renewable feed sources. In an embodiment, a process for producing a lube basestock and/or a diesel fuel from a feedstock of biological origin includes: contacting the feedstock in a single reactor in the presence of hydrogen with catalyst components including a first catalyst and a second catalyst, wherein the first catalyst comprises an acidic material, a basic material, or a combination of both, and wherein the second catalyst is a hydrogenation catalyst including a hydrothermally stable binder.