Abstract:
A DC to DC power converter includes switching circuitry and an LC filter. The LC filter includes a capacitor electrically connected between an inductor and coil. The inductor and coil are wound in a same direction. The coil is positioned and oriented relative to the inductor so that current from the switching circuitry flowing through the inductor and coil results in inductive coupling between the inductor and coil. This coupling increases a frequency at which a parasitic inductance and capacitance of the capacitor resonate.
Abstract:
An electrified vehicle and associated inverter configured for powering two different types of external loads include first and second phase/line legs combined with a first neutral leg coupled to a vehicle chassis, and a second floating neutral leg that is not coupled to the vehicle chassis. The first/second phase legs and first neutral leg are coupled to a first receptacle configured to receive a corresponding plug to power a first load, such as a power tool or accessory. The first/second phase legs and the second neutral leg are coupled to a second receptacle configured to receive a corresponding plug to power a second load, such as a home or building having an earth grounding electrode. The inverter may include an isolation transformer between the loads and the traction battery, and/or may be configured to provide single phase, split-phase, or three-phase power for either or both of the neutral connections.
Abstract:
A system for testing a phase leg of an inverter includes a load coupled to an output terminal of the phase leg. A test circuit includes a capacitor coupled between an inverter power input and a switch module operative to couple the capacitor to the load. The circuit further includes a switch operative to select a polarity of a voltage across the capacitor. The circuit also includes a pair of switching elements operative to selectively couple the first terminal to the inverter power input and the inverter power return. The components can be operated by a controller configured to selectively couple the load to the inverter power and return terminals, selectively charge and couple the capacitor to the load, and interface with the inverter to control a path of current flow through active and passive elements of the phase leg.
Abstract:
A power inverter includes a plurality of power modules each having a power stage encased in a frame that defines an opening. The power modules are stacked in an array with the power stages being spaced apart to define coolant chambers interleaved with the power stages. The openings cooperate to form a manifold cavity extending along a length of the stack and in fluid communication with the chambers. A manifold insert is disposed in the cavity and extends through the openings.
Abstract:
A power electronics assembly includes a case and an array of power stages disposed within the case. Each of the power stages includes a transistor-based switching arrangement configured to change direct current from a traction battery to alternating current for an electric machine. The power stages are bonded together via a resin to form a monolithic power module adhered to a wall of the case. This disclosure also discloses methods for forming power electronic assemblies.
Abstract:
A vehicle includes a traction battery and a converter. The converter includes a switch and first and second busbars electrically connected in parallel between the traction battery and the switch. The second busbar has an inductance less than the first busbar and includes a resistor having a resistance at least an order of magnitude greater than a resistance of the first busbar.
Abstract:
A system includes a surge protection circuit electrically connected via a signal transmission line between a source and an oscilloscope, and including a diode configured to be reverse biased, responsive to a voltage of the source being less than a threshold, to decouple an impedance of the circuit from the transmission line and forward biased, responsive to the voltage being greater than the threshold, to couple the impedance to absorb excess energy of the voltage.
Abstract:
A testing apparatus includes a holster including a jack defining a conductive periphery configured to connect with a reference lead of the voltage probe to form a common ground. The apparatus includes a shunt defining first and second regions of different potential having predetermined difference. The second region is configured to connect with a reference lead of the shunt probe. The apparatus includes a bridge configured to connect the shunt probe lead with the common ground.
Abstract:
A charging system includes an inverter configured to receive rectified mains line voltage and current to power a primary coil to induce charge current in a secondary coil of a vehicle. The charging system also includes a controller configured to alter a switching frequency of the inverter based on charge voltage data from the vehicle to cause the inverter to operate to drive a voltage of an energy storage capacitor of a battery charger of the vehicle toward a constant value.
Abstract:
An electronic device for an electric powertrain of a vehicle is disclosed. The device includes a power module assembly having a housing that defines a first side, and an array of power modules disposed within the housing. Each of the power modules includes first electrical contact patches at least partially embedded in the first side and having an attachment surface substantially parallel to the first side. A capacitor assembly includes a housing defining a second side that is substantially coplanar with the first side, and an array of second electrical contact patches at least partially embedded in the second side. The second electrical contact patches have an attachment surface substantially parallel to the second side. A busbar mechanically and electrically couples at least one of the first contact patches to at least one of the second contact patches.