Abstract:
Methods and apparatus for assessing tire health through monitoring an effective tire rolling radius are disclosed. An example method includes obtaining velocity data for a vehicle from a global positioning system, obtaining angular speed data for a wheel of the vehicle, processing the velocity data and the angular speed data using a digital filter, and determining an effective rolling radius of a tire coupled to the wheel based on the processed velocity data and angular speed data.
Abstract:
Example systems and methods for vehicle mode scheduling with learned user preferences are disclosed. The example disclosed method includes monitoring vehicle data when a vehicle changes from a first mode to a second mode. The example method also includes analyzing the vehicle data to identify a preference for the second mode during a driving context. Additionally, the example method includes generating a recommendation on whether to switch to the second mode while traversing a route based on the vehicle data, and the driving context, and presenting the recommendation to the driver.
Abstract:
A system includes a computing device programmed to receive a set of goals for a vehicle and identify a travel area for the vehicle for a time period. The computing device receives data indicating predictability of driving conditions of the travel area and determines that the predictability is sufficient to control the vehicle according to model predictive control. Controlling the vehicle includes determining instructions to control actuators related to the steering, propulsion and braking of the vehicle to minimize a cost function. The instructions are implemented for a first time slot. The time period is updated to remove the first time slot at the beginning and include an additional time slot at the end of the predetermined time period. The computing device determines an updated control solution, and implements the updated control solution for a second time slot.
Abstract:
The present disclosure generally relates to an obstacle avoidance system with active suspensions. The obstacle avoidance system uses one or more active suspensions to lift or jump one or more corresponding wheels over an obstacle in the vehicle's path to avoid contact with the obstacle when the vehicle cannot practically drive over, steer around, or stop before hitting the obstacle.
Abstract:
A system includes a processor configured to project monitoring needs for a road segment. The processor is further configured to contact one or more vehicles traveling on the road segment during a time of monitoring need. The processor is additionally configured to instruct a first number, determined based on a projected monitoring need, of contacted vehicles to being monitoring and reporting traffic data for the road segment.
Abstract:
A vehicle and a vehicle system are provided with a controller that is configured to generate output indicative of a kinematic road gradient estimation using an extended Kalman filter. The extended Kalman filter includes a system input based on a longitudinal acceleration and an acceleration offset, and a system output based on a predicted vehicle speed. The acceleration offset is based on at least one of a lateral velocity, a lateral offset, and a vehicle pitch angle. The controller is further configured to generate output indicative of a kinematic quality factor corresponding to an availability of the kinematic road gradient estimation.
Abstract:
A curve length, a curve size, and a curve heading angle change of a roadway being traveled by a vehicle are determined. Each of the curve length, the curve size, and the curve heading angle are compared with one or more threshold values to obtain a driving mode request.
Abstract:
A device may estimate crosswind by a vehicle controller according to driver steering inputs indicative of driver intention and crosswind disturbance inputs indicative of a potential crosswind condition. The device may, if the estimated crosswind exceeds a predetermined threshold, utilize the vehicle controller to correct the crosswind condition to reduce vehicle control demand on the driver, the automatic correction including at least one of a steering angle adjustment and suspension stiffness adjustment.
Abstract:
Route planning for road vehicles is performed taking into account a ride quality that results from the roadway conditions along road segments on a route. A plurality of vehicles equipped with controlled suspensions calculate ride quality indices as the vehicles move over a plurality of road segments. The plurality of vehicles transmit the ride quality indices tagged with respective geographic coordinates to an aggregating server. The aggregating server determines a composite ride quality index for each road segment. A subscriber generates a route planning request identifying an origin and a destination. At least one potential route is identified between the origin and the destination comprised of selected road segments. A route ride quality index is determined in response to the selected road segments, and the potential route and the route ride quality index are presented to the subscriber for selection.
Abstract:
A method for controlling an active suspension is disclosed. The method includes steps of determining a dimension of a road abnormality ahead of the vehicle; comparing the dimension with a vehicle dimension; responsive to the comparison, classifying the abnormality as one type of a plurality of predetermined types; responsive to a dimension of the abnormality, further classifying the abnormality as having a severity of one type of a plurality of predetermined types; and controlling the suspension responsive to the abnormality type and severity type.