Abstract:
A vacuum valve closes a flow path in a gas-tight manner using a linear movement and includes a closure member, a first sealing surface of the valve housing that encloses the opening, and a corresponding second sealing surface of the closure member. In the closed position, the second sealing surface is in sealing contact with the first sealing surface. In the region between the opening and the first sealing surface, the valve housing includes a first sloped surface that encloses the opening, and the closure member includes a corresponding, parallel second sloped surface. The sloped surfaces, which have a sloping angle between 3 and 15 degrees relative to the geometric adjustment axis, are located such that, in the closed position of the closure member, the second sloped surface is arranged in a parallel position opposite the first sloped surface at a distance of 0 and 0.6 mm.
Abstract:
A curve-tilting vehicle, e.g., a three-wheeled vehicle (30), including a laterally tilting device (4) at least one section (5) of the vehicle by a tilting axis (6) that runs substantially parallel to the longitudinal axis (3) of the vehicle such that the center of gravity of the vehicle can be displaced perpendicular to the direction of travel when driving, especially in curves or on a sloped or uneven ground. The vehicle includes at least one vehicle seat (8a) that is disposed in the tilting section (5) of the vehicle and is allocated to the driver who steers the vehicle. The vehicle further includes a detector (9a) for detecting a lateral force of the seat, which the body of the driver applies at least to one zone of the vehicle seat (8a) in a lateral direction (10a) extending perpendicular to the direction of travel. The lateral force of the seat may be detected using a pivotal spring-centered vehicle seat (8a). The detector (9a) is effectively connected to the lateral tilting includes (4) in such a way that lateral tilting occurs in accordance with the detected lateral force of the seat while the tilting speed is a function at least of the lateral force of the seat and the vehicle speed, the tilting speed increasing as the lateral force of the seat rises at a factor that decreases as the speed of the vehicle goes up. The invention further relates to a method for tilting such a vehicle.
Abstract:
The invention relates to a valve, in particular a shuttle or sliding valve, for essentially gastight closing of a flow path (F). The valve includes a valve housing (1;1a) having a first wall (2) which has a first opening (3) and a first valve seat (4), a valve disk (5) having a closing side (6) with a sealing ring (7) and at least one drive (8). Through the drive (8), the valve disk (5) is pivotable or displaceable from an opened position (A) essentially parallel to the first valve seat (4), and the perpendicular distance between the valve disk (5), and the first valve seat (4) can be reduced so that, in the closed position (C), the flow path (F) is closed essentially gastight by an axially sealing contact between the sealing ring (7) and the first valve seat (4). The valve disk (5) includes an outer disk section (9), which is connected to the drive (8) and fixes the sealing ring (7) in the perpendicular direction to the first valve seat (4), and an inner disk section (10) which has an outer circumferential area (11) and which is mounted so as to be movable relative to the outer disk section (9) in a direction (Z) essentially perpendicular to the first valve seat (4). The outer circumferential area (11) is enclosed essentially gastight with an inner seal by the sealing ring (7). Thus, in the closed position (C), a pressure difference at the valve disk (5) acts essentially on the inner disk section (10) so that the inner disk section (10), decoupled from the outer disk section (9), is supported perpendicularly on a section of the valve housing (1), in particular the first valve seat (4) or a lateral groove (27).
Abstract:
A butterfly valve comprises a valve housing with a valve opening and a valve seat, this valve housing enclosing a vacuum area of the valve; a valve plate which is mounted at a valve rod guided through the valve housing and which is pressed against the valve seat in a closed position of the valve, tilted relative to the valve seat in a partially open position of the valve through tilting of the valve rod about a tilting axis, and tilted and rotated relative to the valve in a completely open position of the valve by subsequent rotation of the valve rod about its longitudinal axis; wherein the valve rod has portions extending on both sides of the tilting axis, the portion located on one side of the tilting axis acting centrally at the valve plate and the portion located on the other side of the tilting axis being connected, via a link guide which is located outside the vacuum area and which has a link with a part extending at an inclination to the longitudinal axis of the valve rod and a helical surface-shaped part and a journal which is guided in the link, to an actuating member which is mounted so as to be displaceable in axial direction of the valve rod.
Abstract:
A chamber for use in vacuum plants, particularly for treating or storing workpieces or other objects and/or for passing workpieces or other objects therethrough. At least one wall of the chamber has at least one opening through which the workpieces or objects can be introduced or removed. The opening can be closed by means of a closing member including a sealing member which acts together with a sealing surface. The sealing surface is arranged within the chamber laterally of the opening. A circumferentially closed sealing member arranged on the closing member rests against the sealing surface in the closed position of the closing member. The sealing surface has imaginary straight generatrices which extend parallel to the axis of the opening of the chamber. The sealing surface has at least two sealing surface portion which are lateraly offset from each other relative to the axis of the opening and which are connected to each other at opposite locations. The sealing member has sections of different lengths and/or shapes which are located in different planes. Two principal sections of the sealing member are located in planes which extend perpendicularly to the axis of the opening. The two principal sections are spaced apart from each other and are connected by lateral sections. The closing member has a surface which carries the sealing member and corresponds in shape to the sealing surface. The closing member is slidable in the wall of the plane and parallel to the plane of the opening.
Abstract:
A shutoff valve includes a pivotably displaceable flap shaped cutoff part mounted in a flow passageway through a housing. The flap shaped cutoff part is relatively thin so that in the fully open position it does not appreciable reduce the flow passageway cross-section. The cutoff part is pivotably supported at one point in the housing wall and at a diagonally opposite it is supported by a combination of a guide pin and a sliding guide. An actuator located outside the flow passageway is connected to the cutoff part for displacing it between the closed and opened positions. The actuator includes a piston cylinder unit connected to a shifter rod. The shifter rod effects the movement of the guide pin in the sliding guide so that the cutoff part is pivoted about an axis extending transversely of the axis of the flow passageway between the closed and opened positions. By the rectilinear axial movement of the shifter rod the pivotable movement of the cutoff part takes place and the cutoff part is pressed into the closed position into sealed engagement with a valve seat in the housing.
Abstract:
A flap transfer valve is disclosed. An elongated first opening can be closed by elongated valve closure beam pivoted between a closed position and an open position. A shaft can be rotated about a shaft axis by a drive and is operatively connected to the valve closure beam to cause the valve closure beam to pivot. The valve closure beam, the pivoting bearing and the shaft are arranged on a valve cover in a gas-tight valve housing. The shaft, the pivoting bearing and the valve closure beam can be decoupled from the valve housing. The pivoting bearing is formed by at least three bearing elements which are distributed at a distance from one another along the shaft axis in the valve housing, and on which the valve closure beam and the shaft are mounted. The shaft axis is at a distance from the pivoting axis.
Abstract:
A vacuum valve closes a flow path in a gas-tight manner using a linear movement and includes a closure member, a first sealing surface of the valve housing that encloses the opening, and a corresponding second sealing surface of the closure member. In the closed position, the second sealing surface is in sealing contact with the first sealing surface. In the region between the opening and the first sealing surface, the valve housing includes a first sloped surface that encloses the opening, and the closure member includes a corresponding, parallel second sloped surface. The sloped surfaces, which have a sloping angle between 3 and 15 degrees relative to the geometric adjustment axis, are located such that, in the closed position of the closure member, the second sloped surface is arranged in a parallel position opposite the first sloped surface at a distance of 0 and 0.6 mm.
Abstract:
A door for sealing an opening (2) in a wall (3) of a vacuum chamber (4) relative to the atmosphere includes a sealing element (1), which is attached to at least one rod (9, 9′, 9″) and which can be moved between an open position, in which the sealing element releases the opening (2), an intermediate position, in which the sealing element covers the opening (2) but is raised from a seat (7) surrounding the opening (2), and a closed position, in which the sealing element is pressed against the seat (7), a door body (10), which carries the at least one rod (9, 9′, 9″) and the sealing element (1) and which can be tilted about a tilt axis (20) relative to the wall (3) in order to move the sealing element (1) between the intermediate position and the closed position, and at least one tilting actuator (25, 25′, 26, 26′), which has an inner cavity (27) into which a compressed gas can be introduced in order to tilt the door element (10) about the tilt axis (20). At least one wall (39) of the tilting actuator (25, 25′, 26, 26′) bounding the inner cavity (27) is elastic and/or flexible at least over a section of the extent of the wall.
Abstract:
A method for controlling or regulating a vacuum valve that includes: a valve body (1) with a valve opening (2); a closing member (3) that can be moved between an open position and a closed position over a closing path (s) for closing the vacuum valve and that closes the valve opening (2) in the closed position, in which at least one elastic seal (4) is pressed onto a seal face (35); an actuator (5) for moving the closing member (3); and a control device (9) by which the actuator (5) can be triggered; the point (p) of the closing path (s) at which the elastic seal (4) contacts the seal face (35) and/or a velocity (v) of the closing member (3) at that point is used as a controlling parameter for the control device (9).