Abstract:
An article for high temperature service is presented. The article includes a substrate and a thermal barrier coating disposed on the substrate. The thermal barrier coating includes a plurality of aluminum-based particles dispersed in an inorganic binder, wherein the aluminum-based particles are substantially spaced apart from each other via the inorganic binder such that the thermal barrier coating is substantially electrically and thermally insulating. Method of making the article is also presented.
Abstract:
The present disclosure provides methods and systems for in situ cleaning of hot gas flowpath components of a turbine engine that form portions of a hot gas flowpath extending through the turbine. The hot gas flowpath components may include a layer of accumulated contaminants on first portions thereof that form a respective portion of the hot gas flowpath. The first portions may include a thermal battier coating (TBC), and the layer of accumulated contaminants may overlie the TBC and at least partially infiltrate into the TBC. The accumulated contaminants may include CaO—MgO—Al2O3-SiO2 (CMAS) partial melt. The methods may include introducing an acid-including detergent into the hot gas flowpath of the turbine engine and onto the hot gas flowpath components to clean the accumulated contaminants from the first surfaces of the components.
Abstract:
Methods and systems for in situ cleaning of internal cooling circuits of a turbine engine with detergent that provide cleaning a turbine engine that includes circumferentially arranged internal impingement cooling circuits that each include a baffle plate configured to air cool a respective surface or component of the turbine engine. Detergent is introduced through the outer wall and proximate to a back side of a baffle plate such that the detergent passes through at least aperture in the baffle plate and acts at least upon the surface or component that the baffle plate is configured to cool. The detergent may also act on the front side of the baffle plate that is proximate to the surface or component.
Abstract:
The disclosure relates generally to core compositions and methods of molding and the articles so molded. More specifically, the disclosure relates to core compositions and methods for casting hollow titanium-containing articles, and the hollow titanium-containing articles so molded.
Abstract:
A cleaning solution for a turbine engine includes a reagent composition including water within a range between about 25 percent and about 70 percent by volume of the reagent composition, an acidic component within a range between about 0.1 percent and about 50 percent by volume of the reagent composition, and an amine component within a range between about 1 percent and 40 percent by volume of the reagent composition. The reagent composition is diluted with water by a factor of up to about 40 to form the cleaning solution. The cleaning solution has a pH value in the range between 2.5 and 7.0. The cleaning solution is directed towards a component of the turbine engine having a layer of foreign material thereon, to at least partially remove the foreign material from the component. The layer of foreign material is formed at least partially from at least one of thermal reaction products of the foreign material and interstitial cement.
Abstract:
The disclosure relates generally to core compositions and methods of molding and the articles so molded. More specifically, the disclosure relates to core compositions and methods for casting hollow titanium-containing articles, and the hollow titanium-containing articles so molded.
Abstract:
An article for high temperature service is presented. The article includes a substrate and a thermal barrier coating disposed on the substrate. The thermal barrier coating includes a plurality of aluminum-based particles dispersed in an inorganic binder, wherein the aluminum-based particles are substantially spaced apart from each other via the inorganic binder such that the thermal barrier coating is substantially electrically and thermally insulating. Method of making the article is also presented.
Abstract:
A cleaning solution for a turbine engine includes water within a range between about 68.65 percent and about 99.63 percent by volume of the cleaning solution; a first organic acidic component within a range between about 0.1 percent and about 15 percent by volume of the cleaning solution; wherein the organic acid comprises citric acid; a second organic acidic component within a range between about 0.1 percent and about 15 percent by volume of the cleaning solution; wherein the organic acid comprises glycolic acid; isoropylamine sulphonate within a range between about 0.07 percent and 0.14 percent by volume of the cleaning solution; alcohol ethoxylate within a range between about 0.035 percent and 0.07 percent by volume of the cleaning solution; triethanol amine within a range between about 0.035 percent and 0.07 percent by volume of the cleaning solution; sodium lauriminodipropionate within a range between about 0.03 percent and 1.0 percent by volume of the cleaning solution. The cleaning solution has a pH value in the range between about 2.5 and about 7.0.
Abstract:
The disclosure relates generally to mold compositions and methods of molding and the articles so molded. More specifically, the disclosure relates to silicon carbide-containing mold compositions, silicon carbide-containing intrinsic facecoat compositions, and methods for casting titanium-containing articles, and the titanium-containing articles so molded.
Abstract:
The disclosure relates generally to mold compositions and methods of molding and the articles so molded. More specifically, the disclosure relates to silicon carbide-containing mold compositions, silicon carbide-containing intrinsic facecoat compositions, and methods for casting titanium-containing articles, and the titanium-containing articles so molded.