Abstract:
The disclosure relates generally to mold compositions and methods of molding and the articles so molded. More specifically, the disclosure relates to mold compositions, intrinsic facecoat compositions, and methods for casting titanium-containing articles, and the titanium-containing articles so molded, where the mold comprises calcium hexaluminate.
Abstract:
The disclosure relates generally to core compositions and methods of molding and the articles so molded. More specifically, the disclosure relates to core compositions and methods for casting hollow titanium-containing articles, and the hollow titanium-containing articles so molded.
Abstract:
A mixing device having a mixing container and has a single-shaft agitator that extends into the mixing container. At the end of the drive shaft, a rotor body is arranged slightly above the bottom of the mixing container. The rotor body comprises a plurality of mixing blades, wherein the blades are, in one example, star-shaped and fixed in position to each other. A first end of the drive shaft is coupled to a motor and a second end of the drive shaft is configured to extend into the mixing vessel, wherein the blades are attached onto the second end of the drive shaft. The blades in one example include at least two coincidental knife-edged blades such that at least one of the knife-edged blades is facing upward. The mixing device in one example is used to mix calcium aluminate-containing slurries.
Abstract:
The disclosure relates generally to mold compositions and methods of molding and the articles so molded. More specifically, the disclosure relates to a mold for casting a titanium-containing article, comprising calcium aluminate and silicon carbide, wherein said silicon carbide is graded in said mold such that it is in different portions of the mold in different amounts, with the highest concentration of silicon carbide being located between a bulk of the mold and a surface of the mold that opens to a mold cavity.
Abstract:
Crucible compositions and methods of using the crucible compositions to melt titanium and titanium alloys. More specifically, crucible compositions having extrinsic facecoats comprising a rare earth oxide that are effective for melting titanium and titanium alloys for use in casting titanium-containing articles. Further embodiments are titanium-containing articles made from the titanium and titanium alloys melted in the crucible compositions. Another embodiment is a crucible curing device and methods of use thereof.
Abstract:
The disclosure relates generally to mold compositions and methods of molding and the articles so molded. More specifically, the disclosure relates to silicon carbide-containing mold compositions, silicon carbide-containing intrinsic facecoat compositions, and methods for casting titanium-containing articles, and the titanium-containing articles so molded.
Abstract:
The disclosure relates generally to mold compositions and methods of molding and the articles so molded. More specifically, the disclosure relates to silicon carbide-containing mold compositions, silicon carbide-containing intrinsic facecoat compositions, and methods for casting titanium-containing articles, and the titanium-containing articles so molded.
Abstract:
Crucible compositions and methods of using the crucible compositions to melt titanium and titanium alloys. More specifically, crucible compositions having extrinsic facecoats comprising a rare earth oxide that are effective for melting titanium and titanium alloys for use in casting titanium-containing articles. Further embodiments are titanium-containing articles made from the titanium and titanium alloys melted in the crucible compositions. Another embodiment is a crucible curing device and methods of use thereof.
Abstract:
The present disclosure provides methods and systems for in situ cleaning of hot gas flowpath components of a turbine engine that form portions of a hot gas flowpath extending through the turbine. The hot gas flowpath components may include a layer of accumulated contaminants on first portions thereof that form a respective portion of the hot gas flowpath. The first portions may include a thermal battier coating (TBC), and the layer of accumulated contaminants may overlie the TBC and at least partially infiltrate into the TBC. The accumulated contaminants may include CaO—MgO—Al2O3-SiO2 (CMAS) partial melt. The methods may include introducing an acid-including detergent into the hot gas flowpath of the turbine engine and onto the hot gas flowpath components to clean the accumulated contaminants from the first surfaces of the components.
Abstract:
Methods and systems for in situ cleaning of internal cooling circuits of a turbine engine with detergent that provide cleaning a turbine engine that includes circumferentially arranged internal impingement cooling circuits that each include a baffle plate configured to air cool a respective surface or component of the turbine engine. Detergent is introduced through the outer wall and proximate to a back side of a baffle plate such that the detergent passes through at least aperture in the baffle plate and acts at least upon the surface or component that the baffle plate is configured to cool. The detergent may also act on the front side of the baffle plate that is proximate to the surface or component.