Abstract:
An aerial system and method use a distance sensor to measure spatial distances between the distance sensor and plural vehicles in a vehicle system formed from the vehicles operably coupled with each other during relative movement between the distance sensor and the vehicle system. The spatial distances measured by the distance sensor are used to determine a size parameter of the vehicle system based on the spatial distances that are measured.
Abstract:
A system includes a first communication module and a second communication module. The first communication module is configured to be disposed onboard a first vehicle of a vehicle consist, and the second communication module is configured to be disposed onboard a second vehicle of the vehicle consist. The first and second communication modules are communicatively coupled by first and second communication paths. The first and second communication modules are configured to communicate first information over the first communication path and second information over the second communication path. At least a portion of the first information includes a first command corresponding to a first operation of at least one of the first or second vehicles. At least a portion of the second information includes a second command corresponding to the first operation.
Abstract:
A control system includes an energy management system and an isolation control system. The energy management system generates a trip plan that designates operational settings of a vehicle system having powered units that generate tractive effort to propel the vehicle system. The energy management system determines a tractive effort capability of the vehicle system and a demanded tractive effort of a trip. The energy management system identifies a tractive effort difference between the tractive effort capability of the vehicle system and the demanded tractive effort of the trip and selects at least one of the powered units based on the tractive effort difference. The isolation module remotely turns the selected powered unit to an OFF mode such that the vehicle system is propelled along the route during the trip by the powered units other than the selected powered unit.
Abstract:
A system includes a router transceiver unit that is configured to be disposed on-board a vehicle system. The vehicle system may have at least a source vehicle and a separate linked vehicle that are communicatively linked with each other through a system network of the vehicle system. The router transceiver unit is configured to be communicatively coupled to a requesting operational component of the source vehicle and the system network. The router transceiver unit is also configured to receive a local data packet from the requesting operational component that is directed toward a target operational component of the linked vehicle. The router transceiver unit includes an encapsulation module that is configured to transform the local data packet into an in-tunnel data packet, wherein the local and in-tunnel data packets have different packet formats.
Abstract:
A system is provided having a vehicle. The vehicle includes a chassis, and a first network bus extending from internally in the chassis to a first network port attached externally to the chassis at a first side of the vehicle. The vehicle includes a second network bus extending from internally in the chassis to a second network port attached externally to the first chassis at a second side of the vehicle. The first network bus has a first electrical configuration and the second network bus has a second electrical configuration that is different than the first electrical configuration.
Abstract:
A sensing system includes a leading sensor, a trailing sensor, and a route examining unit. The leading sensor is onboard a first vehicle of a vehicle system that is traveling along a route. The leading sensor measures first characteristics of the route as the vehicle system moves along the route. The trailing sensor is disposed onboard a second vehicle of the vehicle system. The trailing sensor measures second characteristics of the route as the vehicle system moves along the route. The route examining unit is disposed onboard the vehicle system and receives the first characteristics of the route and the second characteristics of the route to compare the first characteristics with the second characteristics. The route examining unit also identifies a segment of the route as being damaged based on a comparison of the first characteristics with the second characteristics.
Abstract:
A communication system in a vehicle consist includes a router that is configured to monitor an operational status of a plurality of network channels across a plurality of vehicles in the consist, and to route messages through one or more of the network channels in dependence upon the monitored operational status of the network channels.
Abstract:
A sensing system includes a leading sensor, a trailing sensor, and a route examining unit. The leading sensor is onboard a first vehicle of a vehicle system that is traveling along a route. The leading sensor measures first characteristics of the route as the vehicle system moves along the route. The trailing sensor is disposed onboard a second vehicle of the vehicle system. The trailing sensor measures second characteristics of the route as the vehicle system moves along the route. The route examining unit is disposed onboard the vehicle system and receives the first characteristics of the route and the second characteristics of the route to compare the first characteristics with the second characteristics. The route examining unit also identifies a segment of the route as being damaged based on a comparison of the first characteristics with the second characteristics.
Abstract:
An image management system includes a controller and one or more analysis processors. The controller is configured to receive search parameters that specify at least one of operational data or a range of operational data of one or more vehicle systems. The one or more analysis processors are configured to search remotely stored image data based on the search parameters to identify matching image data. The remotely stored image data was obtained by one or more imaging systems disposed onboard the one or more vehicle systems, and are associated with the operational data of the one or more vehicle systems that was current when the remotely stored image data was acquired. The one or more analysis processors also are configured to obtain the matching image data having the operational data specified by the search parameters and to present the matching image data to an operator.
Abstract:
A communication system includes a router transceiver unit and a bandwidth module. The router transceiver unit includes a network adapter module and a signal modulator module. The network adapter module is configured to receive high bandwidth network data from one or more data sources disposed on board a vehicle. The signal modulator module is configured for electrical connection to a wired connection, and to convert the high bandwidth network data into modulated network data in a form suitable for transmission over the wired connection. The bandwidth module is configured to allocate different portions of a data communication bandwidth of the wired connection to the modulated network data. The allocation is based on categories representing at least one of the one or more data sources or contents of the high bandwidth network data.