Abstract:
A system and method are provided for determining a geographic location of a tower top pivot point (TPP) of a wind turbine tower having a nacelle that includes a machine head and rotor at a top thereof. At least one rover receiver of a global navigation satellite system (GNSS) is configured at a fixed position on the nacelle. A plurality of 360-degree yaw sweeps of the nacelle are conducted and the geo-location signals received by the rover receiver during the yaw sweeps are recorded. With a controller, the geo-location signals are converted into a circular plot and a radius of the plot is determined, the radius being a distance between the rover receiver and the TPP. Based on a GNSS geo-location of the rover receiver and the radius, a geo-location of the TPP is computed.
Abstract:
A method for optimizing wake management in a wind farm includes receiving, via one or more position localization sensors, position data from at least one nacelle of wind turbines in the wind farm. The method also includes determining angle of the nacelle(s) of the wind turbines with respect to true north based on the position data. Moreover, the method includes determining a wind direction at the nacelle(s) of the wind turbines. As such, the method includes generating a wake estimation model of the wind farm in real-time using the wind direction and the angle of the nacelle(s). In addition, the method includes running the wake estimation model to determine one or more optimal operating parameters for the wind turbines that maximize energy production of the wind turbine. Thus, the method includes operating the wind farm using the optimal operating parameter(s) so as to optimize wake management of the wind farm.
Abstract:
A rotary steerable drilling system includes a collar, a drill bit, and a bit shaft connecting the drill bit to the collar. The bit shaft is coupled to the collar through a joint capable of transmitting a torque from the collar to the bit shaft and is swingable with respect to the collar around the joint. The system, further includes first eccentric wheel and second eccentric wheel coupled to the bit shaft and rotatable to swing the bit shaft with respect to the collar around the joint to change a drilling direction, a controller for controlling the first eccentric wheel and second eccentric wheel to harmoniously rotate such that the swing of the bit shaft substantially compensates rotation of the bit shaft, and an active stabilizer mounted on the bit shaft and capable of pushing the bit shaft to deviate to cause a lateral displacement and a tilt angle of the drill bit.
Abstract:
A wind turbine includes a rotor comprising multiple blades mounted on a hub, MIMUs mounted on each blade for sensing parameter signals thereof, and a control system. The control system includes a wind speed calculation unit, a wind shear calculation unit, a pitch angle compensation command calculation unit, and a pitch control unit. The wind speed calculation unit is used for calculating wind speeds at the blades based at least on the sensed parameter signals. The wind shear calculation unit is used for calculating a characteristic shear exponent based at least on the calculated wind speeds. The pitch angle compensation command calculation unit is used for calculating pitch angle compensation commands of the blades based at least on the calculated characteristic shear exponent. The pitch control unit is used for adjusting the pitch angles of the blades based on the calculated pitch angle compensation commands.
Abstract:
A method and associated system are provided for determining a yaw heading (θheading) of a wind turbine, the wind turbine having a tower and a nacelle that includes a machine head and rotor at a top thereof. The method includes configuring a single rover receiver of a global navigation satellite system (GNSS) at a fixed position relative to the nacelle. A GNSS geographic location of a tower top pivot point (TPP) of the wind turbine is determined, as well as an angular offset of the rover receiver (βrover) relative to a centerline axis of the nacelle. Based on the GNSS geo-location of the TPP and a GNSS geo-location of the rover receiver, an angular vector () relative to North of a line between the TPP and the rover receiver is determined. The yaw heading (θheading) is computed from a difference between the angle () and the angular offset (βrover) of the rover receiver.
Abstract:
A drilling system includes a rotatable string for connecting with a bit for drilling a borehole, and an active stabilizer which includes a body having an outer surface for contacting a wall of the borehole, and a plurality of actuators connecting the body and the string and capable of driving the string to deviate away from a center of the borehole with a displacement to change a drilling direction. The drilling system further includes a module for measuring direction parameters including at least one of a declination angle and an azimuth angle of the borehole, a module for measuring imbalance parameters including at least one of a lateral force, a bending moment and a torque near the drill bit, and a controller including a calculator for calculating an adjustment needed for the displacement, based on the measured parameters and expected values of these parameters.
Abstract:
A power generation system comprising a plurality of power generation units; a plurality of energy storage units; a plurality of switch units for connecting or disconnecting the power generation units and the energy storage units; and a controller for controlling the switch units to disconnect one or more idle power generation units from their corresponding energy storage units when the idle power generation units stop operating and to connect the disconnected energy storage unit to one operating power generation unit of the plurality of power generation units based on states-of-charge of the energy storage units. The power generation system may make best use of the energy storage units.
Abstract:
The present subject matter is directed to a wind turbine blade alignment method. A sensor provided on the blade at a blade station with a known twist angle is used to measure an installation angle of the blade station. The installation angle is adjusted if the installation angle measured by the sensor is not equal to the known twist angle. A wind turbine with such a sensor for measuring an installation angle used for blade alignment is also provided.
Abstract:
A flutter control system for a turbine includes a processor. The processor is configured to detect blade flutter of a turbine. The blade flutter indicates that blades of the turbine are in a deflected position different from a nominal operating position. The processor is configured to control operational parameters of the turbine that reduce or eliminate the blade flutter to improve the reliability and efficiency of the turbine.
Abstract:
A wind turbine includes multiple blades, multiple Micro Inertial Measurement Units (MIMUs) for sensing parameter signals of the blades, and a control system. The control system includes a blade bending moment calculation unit, a blade bending moment error signal calculation unit, and a pitch angle compensation command calculation unit. The blade bending moment calculation unit is used for calculating blade bending moment values of the blades based at least on the sensed parameters. The blade bending moment error signal calculation unit is used for calculating blade bending moment error signals of the blades based on the calculated blade bending moment values of the blades and multiple blade bending moment commands. The pitch angle compensation command calculation unit is used for calculating pitch angle compensation commands of the blades based on the calculated blade bending moment error signals to adjust pitch angles of the blades respectively.