Abstract:
A laser system is configured to form at least one laser induced channel in a substrate and includes a laser and a laser path. The laser produces a laser beam, and the laser path includes an optical assembly that receives the laser beam and emits a conditioned laser beam. The optical assembly is configured to emit the conditioned laser beam with a substantially uniform focal energy distribution in a focal region defined along the direction of propagation. An apparatus includes a laser induced channel edge with a plurality of laser induced channels spanning some or all of the thickness of the substrate, which can be greater than 4 mm.
Abstract:
An apparatus, method, and process that includes a substantially transparent substrate having a first surface, a second surface, and edge extending around at least a portion of a perimeter of the substantially transparent substrate, wherein the edge being a laser induced channel edge having enhanced edge characteristics.
Abstract:
A method for removing a material from a surface of a substrate includes impinging a laser beam on the material during a first sweep to remove the material from the surface along a first line and impinging the laser beam on the material during a second sweep to remove the material from the surface along a second line adjacent to the first line. The first line includes first artifacts that form a first portion of an array of artifacts on the surface. The second line includes second artifacts that form a second portion of the array of artifacts on the surface. A first laser pulse of the laser beam corresponding with the second sweep is synchronized with a start of the second sweep when transitioning between the first line and the second line such that the start of the second sweep coincides with the first laser pulse.
Abstract:
A laser system is configured to form laser-induced channels in a substrate at a plurality of spaced apart locations along a process path. The laser system includes a laser delivery assembly that receives the laser beam along a receiving axis and directs the laser beam toward the substrate along an impingement axis that forms an oblique angle with a surface of the substrate. The substrate can be divided into separate first and second portions along a separation surface having a draft angle, thereby facilitating substrate division with a zero-kerf process.
Abstract:
A method for removing a material from a surface includes passing a laser through a lens such that the laser impinges on the material. The surface from which the material is removed has an array of artifacts thereon with a spacing between the artifacts and a pitch between lines of the artifacts. At least the spacing between the artifacts is varied.
Abstract:
A laser system includes a laser configured to emit pulse bursts and a motion device in optical communication with the laser. The motion device moves a laser beam along a process path on a substrate and is configured to have a natural frequency that is greater than an operating frequency of the laser system. The laser system enables high and constant speed processing along tight radii in the process path, which is useful to form laser induced channels along the process path with equal spacing.
Abstract:
An apparatus, method, and process that includes a substantially transparent substrate having a first surface, a second surface, and edge extending around at least a portion of a perimeter of the substantially transparent substrate, wherein the edge being a laser induced channel edge having enhanced edge characteristics.
Abstract:
A laser system is configured to produce a distribution of self-focus damage volumes through the thickness of a substrate. A laser of the laser system produces a laser beam, and an optical assembly receives the laser beam and emits a conditioned laser beam having a geometric focal region. Placing the substrate in the path of the conditioned beam shifts the focal region to an effective focal region. The optical assembly and/or optical elements thereof can be configured such that the distribution of self-focus damage volumes is uniform over the thickness of the substrate by accounting for the non-linear effects of the substrate on the light that propagates through the substrate.
Abstract:
A laser system includes a buffer material at an entry surface of a substrate in which laser-induced channels are formed. The laser beam propagates through the buffer material and impinges the substrate with a central axis of the laser beam at an oblique angle of incidence. The buffer material has a refractive index that may be closer to that of the substrate than is the refractive index of the atmosphere, such as air, in which the laser system operates. The buffer material facilitates forming laser-induced channels at relative large angles with respect to the substrate surface by attenuating energy loss or other effects on the laser beam that are normally caused by the mismatch in refractive index between the environment and the substrate in the absence of the buffer material.
Abstract:
A laser system includes a laser configured to emit pulse bursts and a motion device in optical communication with the laser. The motion device moves a laser beam along a process path on a substrate and is configured to have a natural frequency that is greater than an operating frequency of the laser system. The laser system enables high and constant speed processing along tight radii in the process path, which is useful to form laser induced channels along the process path with equal spacing.