Abstract:
Various methods are disclosed herein for forming alternative fin materials that are in a stable or metastable condition. In one case, a metastable replacement fin is grown to a height that is greater than an unconfined stable critical thickness of the replacement fin material and it has a defect density of 105 defects/cm2 or less throughout at least 90% of its entire height. In another case, a metastable replacement fin is grown to a height that is greater than an unconfined metastable critical thickness of the replacement fin material and it has a defect density of 105 defects/cm2 or less throughout at least 90% of its entire height.
Abstract:
Approaches for isolating source and drain regions in an integrated circuit (IC) device (e.g., a fin field effect transistor (finFET)) are provided. Specifically, the FinFET device comprises a gate structure formed over a finned substrate; an isolation oxide beneath an active fin channel of the gate structure; an embedded source and a drain (S/D) formed adjacent the gate structure and the isolation oxide; and an epitaxial (epi) bottom region of the embedded S/D, the epi bottom region counter doped to a polarity of the embedded S/D. The device further includes a set of implanted regions implanted beneath the epi bottom region, wherein the set of implanted regions may be doped and the epi bottom region undoped. In one approach, the embedded S/D comprises P++ doped Silicon Germanium (SiGe) for a p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET) and N++ Silicon Nitride (SiN) for a n-channel metal-oxide-semiconductor field-effect transistor (NMOSFET).
Abstract:
Various methods are disclosed herein for forming alternative fin materials that are in a stable or metastable condition. In one case, a stable replacement fin is grown to a height that is greater than an unconfined stable critical thickness of the replacement fin material and it has a defect density of 104 defects/cm2 or less throughout its entire height. In another case, a metastable replacement fin is grown to a height that is greater than an unconfined metastable critical thickness of the replacement fin material and it has a defect density of 105 defects/cm2 or less throughout at least 90% of its entire height.
Abstract:
A bulk finFET with partial dielectric isolation is disclosed. The dielectric isolation is disposed underneath the channel, and essentially bounded by the channel, such that it does not extend laterally beyond the channel under the source and drain regions. This allows increased volume of SiGe source and drain stressor regions placed adjacent to the channel, allowing for a more strained channel, which improves carrier mobility. An N+ doped silicon region is disposed below the dielectric isolation and extends laterally beyond the channel and underneath the stressor source and drain regions, forming a reverse-biased p/n junction with the P+ doped source and drain SiGe stressor to minimize leakage currents from under the insulator.
Abstract translation:公开了具有部分电介质隔离的散装finFET。 电介质隔离设置在通道下方,并且基本上由通道限定,使得其不横向延伸超过源极和漏极区下方的沟道。 这允许增加与沟道相邻放置的SiGe源极和漏极应力器体积,从而允许更加紧张的通道,这改善了载流子迁移率。 N +掺杂的硅区域设置在电介质隔离的下方,并横向延伸超过沟道并且在应力源和漏极区之下,与P +掺杂的源极和漏极SiGe应力器形成反向偏置的p / n结,以使来自下面的漏电流最小化 绝缘体。