COMPOSITE ELECTRODE MATERIALS AND METHODS OF MAKING THE SAME

    公开(公告)号:US20220069280A1

    公开(公告)日:2022-03-03

    申请号:US17005559

    申请日:2020-08-28

    Abstract: A composite electrode material may include a carbon-based matrix component and a silicon-based particulate component embedded in the carbon-based matrix component. The silicon-based particulate component may include a plurality of core-shell structures, with each core-shell structure including: a silicon core, an intermetallic layer overlying the core, and a graphitic shell surrounding the silicon core and the intermetallic layer. In a method of making the composite electrode material, a metal catalyst layer may be deposited on a plurality of silicon particles to form a plurality of precursor structures in particle form. The precursor structures may be dispersed in organic polymeric material to form a precursor electrode material, which may be heated in an inert environment to pyrolyze the organic polymeric material and transform the precursor electrode material into a composite electrode material.

    Methods for manufacturing electrodes including fluoropolymer-based solid electrolyte interface layers

    公开(公告)号:US11217781B2

    公开(公告)日:2022-01-04

    申请号:US16377814

    申请日:2019-04-08

    Inventor: Xingcheng Xiao

    Abstract: Methods for manufacturing electrodes include applying a fluoropolymer film to a lithium-based host material, defluorinating the fluoropolymer film by heating to produce a lithium electrode having a solid electrolyte interface (SEI) layer including defluorinated fluoropolymers and at least about 5 wt. % LiF. The fluoropolymers can include one or more of fluorinated ethylenepropylene, perfluoroalkoxy alkanes, vinylidenefluoride, and copolymers of perfluoromethylvinylether and tetrafluoroethylene. The fluoropolymers can include one or more fluorinated monomers, including hexafluoropropylene, tetrafluoroethylene, ethylene-tetrafluoroethylene, perfluoroethers, and vinylidene fluoride. The —CF3 functional groups of the defluorinated fluoropolymers can be about 3 wt. % to about 10 wt. % of the SEI layer. The SEI layer can include about 30 wt. % to about 50 wt. % LiF. The method can include assembling a battery cell by disposing a battery separator between a cathode and the electrode, and disposing the battery separator, the cathode, and the electrode in an electrolyte.

    Electrochemical cell for lithium-based batteries

    公开(公告)号:US10593988B2

    公开(公告)日:2020-03-17

    申请号:US14724703

    申请日:2015-05-28

    Abstract: An electrochemical cell is formed. The cell includes a non-lithium negative electrode in contact with a lithium ion permeable negative electrode current collector, and a positive electrode disposed in contact with a lithium ion permeable positive electrode current collector. The non-lithium negative electrode and the positive electrode are lithium ion permeable. The cell also has a lithium source electrode including lithium ions. A respective microporous polymer separator is disposed between the lithium source electrode and each of the negative and positive electrodes; or a first separator is disposed between the lithium source electrode and one of the negative and positive electrodes, and a second separator is disposed between the negative and positive electrodes. An electrolyte is introduced into the electrochemical cell. A voltage potential is applied across the electrochemical cell to pre-lithiate any of the non-lithium negative electrode and positive electrode with lithium ions from the lithium source electrode.

    METHODS FOR PREPARING CATALYST SYSTEMS
    15.
    发明申请

    公开(公告)号:US20200047160A1

    公开(公告)日:2020-02-13

    申请号:US16056894

    申请日:2018-08-07

    Abstract: Methods for preparing a catalyst system, include providing a catalytic substrate comprising a catalyst support having a surface with a plurality of metal catalytic nanoparticles bound thereto and physically mixing and/or electrostatically combining the catalytic substrate with a plurality of oxide coating nanoparticles to provide a coating of oxide coating nanoparticles on the surface of the catalytic nanoparticles. The metal catalytic nanoparticles can be one or more of ruthenium, rhodium, palladium, osmium, iridium, and platinum, rhenium, copper, silver, and gold. Physically combining can include combining via ball milling, blending, acoustic mixing, or theta composition, and the oxide coating nanoparticles can include one or more oxides of aluminum, cerium, zirconium, titanium, silicon, magnesium, zinc, barium, lanthanum, iron, strontium, and calcium. The catalyst support can include one or more oxides of aluminum, cerium, zirconium, titanium, silicon, magnesium, zinc, barium, iron, strontium, and calcium.

Patent Agency Ranking