Abstract:
Apparatus are disclosed that are configured to distribute internal loads from a drive mechanism to a solid fixed shaft and rotatable tubular shaft coupled to a propeller, for example. An example apparatus involves: (a) a stator, (b) a central shaft arranged coaxially within the stator, wherein the central shaft has a proximal end and a distal end, and wherein the proximal end of the central shaft is fixedly mounted relative to the stator, (c) a tubular shaft arranged coaxially about the central shaft, wherein the tubular shaft is rotatably coupled to the central shaft, wherein the tubular shaft has a proximal end and a distal end, and (d) a rotor, wherein the rotor is coupled to the tubular shaft, and wherein the rotor is arranged coaxially with the stator.
Abstract:
Wind energy systems, such as an Airborne Wind Turbine (“AWT”), may be used to facilitate conversion of kinetic energy to electrical energy. An AWT may include an aerial vehicle that flies in a path to convert kinetic wind energy to electrical energy. The aerial vehicle may be tethered to a ground station with a tether that terminates at a tether termination mount. In one aspect, the tether may be a conductive tether that can transmit electricity and/or electrical signals back and forth between the aerial vehicle and the ground station. The tether termination mount may include one or more gimbals that allow for the tether termination mount to rotate about one or more axis. In a further aspect, the tether termination mount may include a slip ring that allows for rotation of the tether without twisting the tether.
Abstract:
A tether, and system using such a tether, adapted to provide mechanical and electrical coupling of an airborne flying platform to the ground. The tether may have a center structural core with electrical conductors on or near the outer diameter of the tether. The tether may utilize exterior configurations adapted to reduce drag.
Abstract:
The system may include a ground station, a tether attached to a ground station on a first end and to two or more bridles on a second, and a kite. The kite may include a main wing. Each bridle of the two or more bridles may be attached to the main wing, and the two or more bridles may be adapted to provide a torque on the kite to control a roll of the kite.
Abstract:
A motor control topology relevant to airborne wind turbines and a control process for such a motor control topology is disclosed herein. A system may include an aerial vehicle that may include a plurality of propellers, a plurality of drive units coupled to the plurality of propellers, and a tether. Each drive unit may include a motor/generator and a motor controller. The plurality of drive units may include at least two pairs of drive units that include a first drive-unit pair and a second drive-unit pair. The drive units in each drive pair may be connected in parallel, and the at least two pairs of drive units may be connected in series. The drive units may be configured to operate in a first mode and operate in a second mode.
Abstract:
An airborne wind turbine system is provided including an aerial vehicle having a fuselage, an electrically conductive tether having a first end secured to the aerial vehicle and a second end secured to a rotatable drum positioned on a tower onto which the tether is wrapped when the aerial vehicle is reeled in, a perch extending from the tower, one or more perch booms attached to the perch panel and pivotably mounted to the tower, wherein when the aerial vehicle is secured to the perch, the aerial vehicle is positionable in a lowered parked position, and wherein the aerial vehicle is movable to a raised parked position caused by rotation of the one or more perch booms with respect to the tower.
Abstract:
Methods and systems are provided to wrap a faired tether around a drum. The tether may be connected to an aerial vehicle. The method may involve guiding a faired tether around an exterior surface of a drum, wherein the drum comprises a helical shaped step around the exterior surface that is configured to mate with at least part of the faired tether, and to stack subsequent layers of wrapped tether in a staggered manner along the longitudinal axis of the drum. The faired tether may be guided onto the step using one or more level winds.
Abstract:
The system may include a ground station, a tether attached to a ground station on a first end and to two or more bridles on a second, and a kite. The kite may include a main wing. Each bridle of the two or more bridles may be attached to the main wing, and the two or more bridles may be adapted to provide a torque on the kite to control a roll of the kite.
Abstract:
Systems and methods are provided for a wiring harness for an aerial vehicle. A wing of the aerial vehicle comprises a pocket for insertion of the wiring harness. The wiring harness provides wiring and associated connections capable to attach to and power various components.
Abstract:
A method involves operating an aerial vehicle to travel along a first closed path on a tether sphere while oriented in a crosswind-flight orientation. A tether is connected to the aerial vehicle on a first end and is connected to a ground station on a second end. Further, the tether sphere has a radius corresponding to a length of the tether. The method further involves while the aerial vehicle is in the crosswind-flight orientation, operating the aerial vehicle to travel along a second closed path on the tether sphere, such that a speed of the aerial vehicle is reduced. And the method involves after or while the speed of the aerial vehicle is reduced, transitioning the aerial vehicle from traveling along the second closed path while in the crosswind-flight orientation to a hover-flight orientation.