Abstract:
A direct welding process for joining a current collector to a terminal pin in the construction of electrochemical cells is described. The resistance welding process utilizes increased current combined with an applied force to bond dissimilar metals with a melting temperature differential of preferably more than 500° C. Preferably, the method is used to bond the terminal pin to the cathode current collector. This method of attachment is suitable for either primary or secondary cells, particularly those powering implantable biomedical devices.
Abstract:
A process for creating a laser braze weld joint between a current collector and a terminal pin in the construction of electrochemical cells is described. The laser braze welding process utilizes a laser weld instrument to create a braze-like joint between two work pieces. The weld joint is created by controlling the amount of laser heat and energy imparted to the work pieces through proper control and positioning of the laser beam with respect to the work pieces. Preferably, the method is used to bond the terminal pin to the cathode current collector. This method of attachment is suitable for either primary or secondary cells, particularly those powering implantable biomedical devices.
Abstract:
A direct welding process for joining a current collector to a terminal pin in the construction of electrochemical cells is described. The resistance welding process utilizes increased current combined with an applied force to bond dissimilar metals with a melting temperature differential of preferably more than 500° C. Preferably, the method is used to bond the terminal pin to the cathode current collector. This method of attachment is suitable for either primary or secondary cells, particularly those powering implantable biomedical devices.
Abstract:
An electrode used for resistance welding is described. In an embodiment, the electrode comprises a two-part construction having an electrode tip portion that is removably contactable to an electrode base. The electrode is constructed such that the respective base and electrode tip portions may be composed of metals having differing melting temperatures, in particular a significant difference in melting temperature of at least 100° C. or more. The electrode is preferably constructed so that the electrode tip portion can be easily removed, thereby leaving the base portion within the fixture.
Abstract:
A process for creating a laser braze weld joint between a current collector and a terminal pin in the construction of electrochemical cells is described. The laser braze welding process utilizes a laser weld instrument to create a braze-like joint between two work pieces. The weld joint is created by controlling the amount of laser heat and energy imparted to the work pieces through proper control and positioning of the laser beam with respect to the work pieces. Preferably, the method is used to bond the terminal pin to the cathode current collector. This method of attachment is suitable for either primary or secondary cells, particularly those powering implantable biomedical devices.
Abstract:
The present invention is directed to an electrochemical cell having plate electrodes housed inside a mating “clamshell” casing. When mated together, the casing components are form-fitting with respect to the internal battery structure so as to reduce the overall size of the electrochemical package. A header assembly containing both a glass-to-metal seal opening for a terminal lead and an electrolyte fill opening is used in conjunction with the clamshell casing. The electrolyte fill opening is constructed with an elongated opening with at least two different radii. A first and second sealing element is welded within the electrolyte fill opening at different depths within the header to block the flow of electrolyte and form a hermetic seal.
Abstract:
An electrochemical cell comprising an electrode assembly having a plurality of cathodes in which the plurality of cathodes is electrically connected together at a connection tab junction is disclosed. The junction preferably comprises a plurality of cathode connection tabs that are folded over each other to construct a junction that is mechanically and electrically robust. The junction is comprised of a plurality of connection tabs that each extend from a cathode. Each of the respective tabs is folded over each other to form a compact electrode junction having redundant connections. An elongated lead extends from the junction to provide an electrical connection to the plurality of cathodes. The junction is welded together such as by a laser, resistance or ultrasonic weld joint. The cathode junction is suitable for either primary or secondary cells, particularly those powering implantable biomedical devices.
Abstract:
A magnetic pulse welding process for joining a current collector to a terminal pin in the construction of electrochemical cells is described. The magnetic pulse welding process utilizes a pulsed direct current and an electrically conductive coil to generate an electro-magnetic force that causes two work pieces to collide with each other and form a bond therebetween. Preferably, the method is used to bond the terminal pin to the cathode current collector. This method of attachment is suitable for either primary or secondary cells, particularly those powering implantable biomedical devices.
Abstract:
A process for creating a laser braze weld joint between a current collector and a terminal pin in the construction of electrochemical cells is described. The laser braze welding process utilizes a laser weld instrument to create a braze-like joint between two work pieces. The weld joint is created by controlling the amount of laser heat and energy imparted to the work pieces through proper control and positioning of the laser beam with respect to the work pieces. Preferably, the method is used to bond the terminal pin to the cathode current collector. This method of attachment is suitable for either primary or secondary cells, particularly those powering implantable biomedical devices.
Abstract:
An electrochemical cell comprising an electrode assembly having a plurality of cathodes in which the plurality of cathodes is electrically connected together at a connection tab junction is disclosed. The junction preferably comprises a plurality of cathode connection tabs that are folded over each other to construct a junction that is mechanically and electrically robust. The junction is comprised of a plurality of connection tabs that each extend from a cathode. Each of the respective tabs is folded over each other to form a compact electrode junction having redundant connections. An elongated lead extends from the junction to provide an electrical connection to the plurality of cathodes. The junction is welded together such as by a laser, resistance or ultrasonic weld joint. The cathode junction is suitable for either primary or secondary cells, particularly those powering implantable biomedical devices.