Abstract:
A subassembly for an integrated wireless module is provided. The subassembly includes an integrated-wireless-module input/output (I/O) connector, a modem controller; at least one internal antenna, and at least two modem connectors communicatively coupled to the modem controller, the modem connectors configured to interface with at least two modems. The modem controller digitally selects to one of: communicatively couple one of the at least two modem connectors to one of the at least one internal antenna; communicatively couple one of the at least two modem connectors to the integrated-wireless-module I/O connector; and communicatively couple a first one of the at least two modem connectors to one of the at least one internal antenna and communicatively couple a second one of the at least two modem connectors to the integrated-wireless-module I/O connector.
Abstract:
An electronic signoff system for vehicle departure readiness is provided which may include, but is not limited to, a wireless e-signoff management system, the wireless e-signoff management system configured to generate a workflow for a turnaround of the vehicle, transmit one or more tasks to each of a plurality of personal electronic devices, receive an indication that one of the tasks has been completed when the personal electronic device reads a task completion component associated with the task, update a dashboard corresponding to the workflow after each task is completed, transmit a notification to any subscribing electronic device, the notification including the data from the dashboard, receive, from an electronic device associated with the turnaround coordinator, final signoff notification when the vehicle is ready to depart, and transmit the final signoff notification to the at least one of the subscribing electronic devices.
Abstract:
Systems and methods of crowd sourcing data are provided. In one embodiment, a method of crowd sourcing data comprises: receiving data region boundary information from an aggregation system, the data region boundary information defines boundaries of data regions; determining membership in a data group for a vehicle based on position of the vehicle within a region; determining whether another member of the data group has been selected as data source; determining whether the vehicle can provide information to the data aggregation system; broadcasting a self-nomination message for the information to members of the data group, wherein the self-nomination message self-selects the vehicle as data source for the information; wherein the self-nomination message identifies the type of information; and transmitting the information from the data source to the data aggregation system via a communication link, wherein only the data source transmits the information to the data aggregation system for the data group.
Abstract:
Systems and methods for communicating data from off-vehicle data sources to a vehicle are provided. In one embodiment, a method for obtaining data for a vehicle comprises: initiating an information request from on-board a vehicle; formatting the information request onboard the vehicle into a data file format to generate a request file; performing a wireless file transfer of the request file from the vehicle to a data center, wherein the request file is transferred to a file system location; polling the file system location for creation of a response file corresponding to the request file; when the response file is detected within the file system location, retrieving the response file from the data center to the vehicle; and displaying at the vehicle information responsive to the information request from the response file. In some embodiments, the file system location is a file system location uniquely associated with the vehicle.
Abstract:
A system and method for providing remote access to an on-board aircraft system provides establishing communication between an aircraft server that is located within the aircraft and a remote computer that is located outside of the aircraft. In the aircraft, a request is received to establish a remote session between the remote computer and the aircraft server. A passcode is generated in the aircraft, and is transmitted from a first communication device that is collocated with the aircraft to a second communication device that is collocated with the remote computer. The passcode is then transmitted from the remote computer to the aircraft server and, upon receipt of the passcode by the aircraft server, the remote computer is provided with remote access to the on-board aircraft system.
Abstract:
A method for updating aircraft data is provided. The method comprises: receiving one or more messages at a ground system that one or more aircraft is in a safe state on the ground; selecting one or more aircraft in the safe state to receive a software or database update from the ground system; verifying that the selected one or more aircraft in the safe state is in need of the software or database update; initiating a remote loading of the software or database update to the verified selected one or more aircraft in the safe state; and receiving one or more messages at the ground system from the verified selected one or more aircraft indicating a status of the remote loading.
Abstract:
A method for updating aircraft data is provided. The method comprises: receiving one or more messages at a ground system that one or more aircraft is in a safe state on the ground; selecting one or more aircraft in the safe state to receive a software or database update from the ground system; verifying that the selected one or more aircraft in the safe state is in need of the software or database update; initiating a remote loading of the software or database update to the verified selected one or more aircraft in the safe state; and receiving one or more messages at the ground system from the verified selected one or more aircraft indicating a status of the remote loading.
Abstract:
A method and system for a smart data query are disclosed. The method comprises automatically monitoring one or more data sources that transmit lower fidelity data, and automatically looking for one or more salient features in the lower fidelity data to determine whether more data is needed. When more data is needed, the method identifies a data source that provides higher fidelity data that corresponds to the needed data. The higher fidelity data is then received from the identified data source. The method then updates information, consumable by a system or an operator, with the received higher fidelity data.
Abstract:
A collaborative aviation information collection and distribution system includes a plurality of aircraft data transmitters and an aircraft data processing system. Each aircraft data transmitter is configured to selectively transmit aircraft data associated with a subscribing aircraft. The aircraft data processing system is in operable communication with each of the aircraft data transmitters and includes a data receiver, a data transmitter, and a data processor. The data receiver receives aircraft data transmitted from each of the aircraft transmitters. The data transmitter selectively transmits actionable aircraft data to one or more of the subscribing aircraft or subscribing ground-based users. The data processor determines which of, and when, the one or more subscribing aircraft or subscribing ground-based users should receive actionable aircraft data, generates actionable aircraft data from at least a portion of the received aircraft data, and supplies the generated actionable aircraft data to the data transmitter for transmission.
Abstract:
A system, vehicle and method for enhanced vehicle operator connectivity to external networks and onboard systems via a single access point are disclosed. For example, a method for enhanced vehicle operator connectivity is disclosed. The method includes communicating with the Internet through a communications access point onboard a vehicle, communicating with a server external to the vehicle through the communications access point and the Internet, and communicating with an electronics system onboard the vehicle through the communications access point, the Internet and the server.