Abstract:
Embodiments of the present invention provide an uplink control information transmission method, a base station, and user equipment. The method includes: receiving, by UE in a downlink subframe N, a downlink control channel sent by a base station; sending, by the UE, a hybrid automatic repeat request-acknowledgement corresponding to the downlink control channel to the base station in an uplink subframe N+4 by using a PUCCH, where when the uplink subframe N+4 belongs to a first uplink subframe set, the PUCCH is carried on a second serving cell of the UE, and when the uplink subframe N+4 belongs to a second uplink subframe set, the PUCCH is carried on the first serving cell, where a duplexing mode of the first serving cell is different from a duplexing mode of the second serving cell.
Abstract:
The present invention provides a downlink channel decoding method, a downlink information transmission method, a user equipment, and a base station. The downlink channel decoding method includes: determining, by a user equipment, a resource unit occupied by a DMRS; and decoding a downlink channel based on the DMRS transmitted on the resource unit. The present invention can enable different DMRS patterns to concurrently exist on an NCT carrier. In a downlink transmission process, a DMRS pattern used for downlink transmission is determined according to priorities of different channels and/or signals, which can ensure optimal performance of a high-priority channel and/or signal, and can further improve downlink transmission performance.
Abstract:
The present disclosure relates to a method for reporting channel state information, a user equipment, and a base station. A channel state information measurement resource is determined by a UE according to an aperiodic CSI trigger signaling, so that a base station transmits a CSI-RS only when the UE needs to report the aperiodic CSI. Compared with transmitting a periodic CSI-RS by an existing base station, unnecessary transmitting of the CSI-RS is reduced, and energy of the base station such as an eNB is saved; and reducing the CSI-RS transmission may reduce resources occupied by the CSI-RS, thereby improving the spectrum efficiency of the system. In addition, reducing unnecessary CSI-RS transmission allows the interference in other cells by the base station being reduced; finally, CSI measurement resources are reserved only when the CSI needs to be fed back, the cost occupied by the CSI measurement resources is reduced.
Abstract:
A terminal device determines a resource of a physical uplink control channel. The physical uplink control channel carries a first encoded bit sequence and a second encoded bit sequence, the first encoded bit sequence is corresponding to first uplink control information, and the second encoded bit sequence is corresponding to second uplink control information. The resource for the physical uplink control channel includes N orthogonal frequency division multiplexing (OFDM) symbol sets. The first encoded bit sequence is carried in an OFDM symbol included in j OFDM symbol sets, the j OFDM symbol sets are a part of or all of of the N OFDM symbol sets, where j is a positive integer less than or equal to N. The terminal device sends, on the resource for the physical uplink control channel, a signal that is generated based on the first uplink control information and the second uplink control information.
Abstract:
In a handover process, a source base station can send information about a band combination to a target base station (such as a master base station). The band combination includes a band of the target base station and a band of a secondary base station. After receiving the information about the band combination, the target base station can add the secondary base station in the handover process or add the secondary base station immediately after the handover is completed.
Abstract:
Embodiments of this application provide a control channel configuration method, a base station, and a terminal device. The method includes: determining, by a base station, a configuration of a time-frequency resource unit from at least two configurations of a time-frequency resource unit of a control channel; and sending, by the base station, indication information to a terminal device, where the indication information is used to indicate the configuration of the time-frequency resource unit, and the at least two configurations of a time-frequency resource unit include a first configuration and a second configuration. In the embodiments of this application, the base station can flexibly configure the time-frequency resource unit of the control channel. In addition, flexibly configuring a time-frequency resource unit can reduce a probability that time-frequency resource units of different structures are blocked, thereby reducing complexity of detecting the control channel by the terminal device.
Abstract:
A method includes: determining, by a terminal device, a first search space and a second search space, where the first search space is a part of the second search space; detecting, by the terminal device, at least one piece of first-type downlink control information (DCI) in the first search space; and detecting, by the terminal device, at least one piece of second-type DCI in the second search space, where the first-type DCI is used to schedule data transmission with a first time length, the second-type DCI is used to schedule data transmission with a second time length, and the first time length is less than the second time length.
Abstract:
In the information transmission method provided in this disclosure, a terminal device receives downlink control information. The downlink control information includes first information, and the first information indicates an uplink control channel resource for carrying uplink control information. The uplink control channel resource belongs to a first uplink control channel resource set, and the first uplink control channel resource set includes at least two uplink control channel resources that correspond to different quantities of symbols, or includes at least two uplink control channel resources that correspond to different quantities of resource blocks. The terminal device sends uplink control information to a network device by using the uplink control channel resource.
Abstract:
The present disclosure relates to channel quality information reporting methods, apparatus, and systems. One example method includes obtaining, by a user equipment (UE), a reporting method of reporting channel quality information by the UE, and reporting, by the UE, the channel quality information to a base station in the reporting method. The reporting method comprises at least one of a reporting granularity, a reporting range, and a reporting mode.
Abstract:
Embodiments of the present invention provide a channel-state information process processing method, a network device, and a user equipment, where the channel-state information process processing method includes: after receiving a first channel-state information CSI request sent by a first network device, if CSI corresponding to multiple aperiodic CSI processes has not been reported by a user equipment, dropping CSI corresponding to a part of aperiodic CSI processes among the multiple aperiodic CSI processes, where each CSI process is associated with a channel measurement resource and an interference measurement resource. A problem existing after a CoMP technology is introduced can be solved that the UE cannot implement processing of multiple CSI processes.